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Abstract

The World Wide Web never stands still. The Semantic Web (SW) is one of the core aspects that
plays a big role in this development. The Semantic Web allows information to be tagged, related
and most of all understood by computers. The W3C Linking Open Data community project takes
this one step further by linking Semantic Web data from various sources. By connecting all these
loose elements of data it becomes possible to find out more information from various sources.
A standard has been developed by the World Wide Web Consortium (W3C), called Resource
Description Framework (RDF). This loose structure allows for flexible ways to relate any sort of
data and describe its semantics. Generally RDF data sets can be represented as a directed graph
of objects (the nodes) and relations (the edges).

One basic extension of RDF is RDF Schema (RDFS). This layer describes some basic semantics
of a set of resources, which includes transitivity for some relations. A common problem in various
areas of computer science is computing the (transitive) closure or entailment of a graph. Similarly,
it is not trivial to check if a triple exists in the closure of an RDFS graph, if there are complicated
rules which infer new data.

This thesis investigates three physical indexing methods for RDF storage, comparing them
using a specific entailment algorithm proposed in the literature. As such the indexing schemes
were compared to find out which one can best be used to perform efficient updates on RDF
graphs. Especially the amount of I/O page faults were taken into consideration. Disk I/O is slow
and therefore expensive in terms of time. As RDF graphs are generally too large to fit in main
memory, the I/O cost should be minimised to achieve better performance. Empirical experiments
of this comparison show that an enhanced version of the state of the art physical representation
yields the best results.

Keywords: Semantic Web, RDFS, Entailment, I/O Efficiency
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Chapter 1

Introduction

The World Wide Web never stands still. Huge investments are put in research and development
of web services. Especially popular in recent years are social networks. These services allow
members to find friends, friends of friends, and discover similar interests of others. Search engines
also continue to improve themselves by finding out more about what the data they discover actually
means. If an article on the web is shared on a social network by a friend, the search results will
let you know if you look for a related term. These kind of relations are continuously discovered
and used in various ways. Not only to serve the user in such a direct way, but also to gather
information for marketing purposes.

The Semantic Web1 (SW ) is one of the core aspects that plays a big role in this development.
The Semantic Web allows information to be tagged, related and most of all understood by com-
puters. The Linking Open Data (LOD) community project by the World Wide Web Consortium
(W3C ) takes this one step further by linking Semantic Web data from various sources [10]. This
data can come from any part of the web, including popular sites such as Wikipedia, MusicBrainz
and Last.FM. Some governments also participate in this project by providing open data sets, such
as the Dutch rechtspraak.nl, US Census information and UK post codes, research or educational
data sets [5].

Consider the (hypothetical) example of a review for a movie; using the Semantic Web and
linked data, the review can be linked to the movie’s entry on IMDb. The author’s information is
linked to a FOAF -record (Friend of a Friend), but also reveals that the author is also active on
Twitter and Facebook. Through Facebook we find out that the director of the movie is in fact a
close friend...

By connecting all these loose elements of data it becomes possible to find out more information
from various sources. A standard has been developed by the W3C, called Resource Description
Framework2 (RDF ). This loose structure allows for flexible ways to relate any sort of data and
describe its semantics.

RDF consists of triples which desribe relations between two data items (resources or atoms),
using a third resource. Resources can be placed in any position of the triple; by connecting them
an RDF graph (or Semantic Web Graph) is created.

One basic extension of RDF is RDF Schema (RDFS ). This layer describes some basic semantics
of a set of resources – the RDFS vocabulary. This description of behavior includes transitivity for
some relations: if A and B are related with a transitive relation R, and resources B and C are
related in the same way, then A and C are also related using R.

A common problem in various areas of computer science is computing the (transitive) closure
or entailment of a graph. This is the base graph, expanded with all implicit relations that can be
stated due to the use of transitive relations. While the naive ways to compute it do work, doing
this efficiently is a different story. Similarly, it is not trivial to check if a triple exists in the closure
of an RDFS graph, if there are complicated rules which infer new data.

1http://www.w3.org/2001/sw/
2http://www.w3.org/RDF/

1

http://www.w3.org/2001/sw/
http://www.w3.org/RDF/


CHAPTER 1. INTRODUCTION

1.1 Research Scope and Goal

The research of this thesis focuses on Semantic Web storage. It especially focuses on storing data
in such a way, that it is possible to efficiently and quickly retrieve inferred information from the
database, using a specific set of rules. In other words, research is focused on checking if specific
information is in the closure or entailment of a Semantic Web graph.

Inferring data has many implications. As argued by Chirkova and Fletcher [2] it is required
to check if a statement exists in the entailment of the graph after removal of a triple from the
graph. Any statement which makes it possible to still derive the just-removed triple may trigger
problems, as it may not be possible to deterministically remove a statement from the graph.

The basis in solving this is laid out by Muñoz et al. [13]. They described an algorithm which
can verify if an RDF graph H is entailed by another RDF graph G. More specifically, the algorithm
is able to check if a specific RDF triple exists in the closure of graph G.

Unfortunately the algorithm merely exists in theory. There is no reference implementation to
work from. Additionally its efficiency is proven only based on algorithmic complexity. Practical
limitations such as relatively slow disks are not taken into consideration.

The end goal of our research is to design, implement and test a framework to efficiently check if
a triple exists in the closure of a graph, using this algorithm as a starting point. Because Semantic
Web data is often much too large to fit in main memory, several optimizations will have to be
made to make the algorithm more efficient for real-world usage.

There are several major tasks involved in the complete research.

1. Implement the algorithm and verify its correctness.

2. Adjust the algorithm for better I/O performance in general.

3. Create test data which models real-world data.

4. Develop and compare various physical representations using the algorithm on the test data.

The research goal can therefore be described as follows:

Research Goal: Compare various physical representations of RDFS graphs for (I/O) efficiency,
using models of real-world data and an algorithm to check if such an RDFS graph entails a
triple.

1.2 Research Method

The project as described in the previous section can be split into smaller pieces of work. The
various points to tackle are as follows:

1. Study the proposed algorithm.

2. Modify algorithm for general I/O efficiency.

3. Create an implementation of the algorithm.

4. Verify the correctness of the algorithm using this implementation.

5. Correct the implementation if necessary.

6. Develop different physical representations of RDFS data.

7. Generate test data with a structure like real-world data.

8. Extract queries from this test data.

2 A Study of Efficient RDFS Entailment in External Memory



1.3. CONTRIBUTIONS

9. Compare the efficiency of entailment checking over the physical representations, using the
implementation, test data and their queries.

The end result is an application which is able to manage RDFS data and contains an imple-
mentation of the mentioned algorithm, which can check for arbitrary triples if they exist in the
entailment of the loaded graph. It is also able to report statistics of an execution of the algorithm,
especially the amount of pages that need to be read to answer a query.

Additionally the results of the comparisons using this application will be produced. This results
in a choice for the most practical of the tested physical representations, based on the executed
experiments.

1.3 Contributions

This study contributes a few novel things. First, an implementation of the proposed entailment
algorithm is made, with some extensions and corrections. Second, a new method of storing and
indexing RDFS data is introduced, which builds on the current state of the art methods. This new
method yields significantly better performance with the aforementioned algorithm, at a minimal
cost in other areas.

Finally this study provides an in-depth emperical study comparing three storage methods based
on the disk I/O performance, measured by the amount of cache misses of the database.

1.4 Thesis Outline

This thesis will discuss the various indexing methods for RDF storage, comparing them using the
entailment algorithm. Especially the amount of cache misses, which potentially cause disk I/Os,
will be taken into consideration. Disk I/O is slow and therefore expensive in terms of time. As
SW graphs are generally too large to fit in main memory, the I/O cost should be minimized to
achieve better performance.

The contents of this report is as follows.

Chapter 2 gives some background information regarding RDF, RDFS, the algorithm and used
(internal) data structures.

Chapter 3 discusses the correctness of the tested algorithm, including some modifications made
beforehand to achieve better performance.

Chapter 4 describes the experimental setup, including the tested physical representations, the
data sets and queries that were used.

Chapter 5 has information regarding the framework that was built to run the experiments.

Chapter 6 contains the experimental results of the research, as well as an analysis of those
results.

Chapter 7 provides conclusions based on the results, and discusses future work that can be
performed to continue research in the area of RDF entailment.

1.5 Related Work

Many others have already studied the performance of different storage methods of RDF data in
various different ways, for example [9, 18, 19, 21]. A lot of research has gone into indexing RDF
data for fast query processing. In other words, it is focused mostly on specific queries to extract
data from an RDF graph. These indexes are benchmarked, mostly using “wall time” to measure
performance. Especially when the benchmarks use small data sets, the data may live entirely

3



CHAPTER 1. INTRODUCTION

in the underlying file system cache. Therefore such experiments can give unreliable results, as
the measurements do not include actual disk I/O costs. Also, the queries are often limited in
complexity or join depth.

Because large, real-world data sets generally do not fit in main memory, the results are not
guaranteed to be very scalable solutions. The performance of for example compared indexing
techniques may therefore be unrealistic when it comes to real-world usage.

Others have used various methods to compute the entailment of RDFS graphs. One way
is to use a MapReduce technique. The problem is divided and solved in a distributed manner
[15, 25, 29]. On the other hand, Datalog engines are used to work with the entailment of an RDFS
graph in a manner related to logic programming [11].

This thesis is different in two ways. Its focus is based on an actual algorithm which is required
to determine if a triple is entailed by a graph. It does not just run static queries, but tries to
dynamically check if a triple is in the closure of a graph using specific rules about inferred data.
The used algorithm uses the inference of RDFS which means the length of some sub-graphs can
heavily influence the running time of the algorithm. As such, the queries are not the sole factor
which define the running time of the algorithm, but the used data set is a major factor in this as
well.

This thesis also counts the number of I/O cache misses as measure. As the cache size of the
application is limited, this will measure the performance of the algorithm when the RDF graphs
grow beyond the limits of RAM memory. This is supported by the fact that the test data contains
graphs with millions of triples in them. The used data sets are modeled after real-world data.
They are, however, much larger and structured such that the algorithm will in general perform
worse using this test data, than when using it on real-world data.

An additional contribution introduced in this thesis is an extension of the Triple-T physical
representation [9]. This extension stores a small part of the entailment of an RDFS graph, by
inferring this data upon updates of the graph. This adds the benefit that looking up information is
quicker, while not compromising much on the consumed storage space of the graph, or complexities
of updates.

4 A Study of Efficient RDFS Entailment in External Memory



Chapter 2

Preliminaries

This chapter will discuss some preliminary concepts used throughout this thesis. These concepts
are the foundation upon which this research continues. Discussing these topics in-depth is beyond
the scope of this thesis; only the required basic information will be provided.

2.1 RDF

The Resource Description Framework (RDF) was devised by the W3C to provide a way of storing
abstract data. As the name suggests, it is targeted at describing resources. More specifically it
is used to model information contained in web resources. The first specification was published in
1999. The current set of specifications was published in 2004. Work has started into revising this
version. This was kicked off by a W3C Workshop RDF Next Steps 1.

The data structure of RDF is simple. Every data set contains statements, or triples, only.
Each triple is of the form (subject, predicate, object). The resource (subject) is described using
a relation (predicate) to another resource (object). Resource is a very liberal term, as it can in
essence be anything. Each word can be used in any position of a triple, so relations and resources
can be easily interchanged. Throughout this thesis the term atom will often be used as synonym
of an RDF resource.

A data set, such as the one in figure 2.1, is an RDF graph. Each statement can be viewed as
two nodes (subject and object) connected by an edge (predicate).

stuff

moreStuff

describes

evenMoreStuff
describes

contains

lotsOfStuff

contains

contains

Figure 2.1: RDF Graph Example

Consider the graph in figure 2.1. Here the atoms stuff , moreStuff , evenMoreStuff ,
lotsOfStuff are used as both subjects and objects, depending on the triple. For example, in
(stuff, describes,moreStuff) the stuff atom is the subject. Atom describes is the predicate,
whereas moreStuff is the object.

1W3C Workshop – RDF Next Steps http://www.w3.org/2009/12/rdf-ws/

5
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CHAPTER 2. PRELIMINARIES

RDF graphs are mostly used in the Semantic Web and to link data in the Linking Open
Data project. There is no fixed way of serializing or storing RDF data, although there are some
commonly used serialization formats. These include RDF XML2, Notation 3 3 (N3 ) and RDFa4.

Because of the loose structure of RDF and the sheer size of the graphs, often containing millions
of statements, active research still involves finding ways to structure the data such that it can be
reasoned over efficiently. Each year there is a Semantic Web challenge that challenges organisations
to develop scalable RDF tools. One track of this challenge is the Billion Triples track. The goal
of this track is “to demonstrate the scalability of applications as well as the capability to deal with
the specifics of data that has been crawled from the public web.” [20]

RDF is used in many large projects. These include Linked Open Data, which connects data
from various popular source, including some Open Government Data. The target of the latter is to
make government data better searchable. Furthermore RDF can also be used to collect information
about files or documents on a personal computer, such as in the NEPOMUK 5 project.

All these sets contain a lot of (meta)data which is stored in RDF graphs. Each document,
person or entity can produce multiple RDF triples. With the possibility of having to keep metadata
of thousands or even millions of documents (for example e-mails or web pages) or people in a graph
(for example in social networks), it becomes evident that RDF graphs can easily grow to become
huge data sets.

2.2 Ontologies

RDF graphs can roughly be split into two parts. The first part is the ontology. This consists of
RDF triples which describes the data in the second part, the instance data. For example, the
ontology describes the domains and ranges of predicates and the type of data – the metadata of
the other data.

The other part instantiates actual data, making statements about items and defining relations.
The instance data sets are generally much larger (up to millions or even billions of triples) than
the ontologies. In general this data is already metadata (since it describes items – such as people
– but does not contain the items themselves), making the ontology meta-metadata.

rdf:Property

describes

rdf:type

stuffCollection

rdfs:domain

rdfs:range

contains
rdf:type

rdfs:subPropertyOf

stuff

rdf:type

Figure 2.2: RDF Ontology Example

Figure 2.2 shows part of the ontology of the data in figure 2.1. Resources contains and describes
are properties. These connect resources of type stuffCollection, as both domain and range. The
stuff resource, but also moreStuff, evenMoreStuff and lotsOfStuff, are such resources of type
stuffCollection.

Ontologies and instance data are syntactically equal. Both contain triples, which are of the
same form: entities (the subject and object) are related using a predicate. Because the ontologies

2RDF XML: http://www.w3.org/TR/rdf-syntax-grammar/
3N3: http://www.w3.org/TeamSubmission/n3/
4RDFa: http://www.w3.org/TR/rdfa-syntax/
5NEPOMUK: http://nepomuk.semanticdesktop.org
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and instance data use the same base structure – RDF – they are also regularly stored together in
one graph. Note however that it is perfectly valid to keep the two stored separately. Also, a graph
can simply merge and combine multiple ontologies if necessary.

A lot of current research is about ontology evolution. This involves research focused on changing
and updating ontologies – in part automatically – to update the knowledge contained in the
ontology. This involves updating the instance graph to reflect the changes in the ontology as well.
This can be done either materializing the new data, or by finding implicit data on demand, which
will be discussed in this thesis.

2.3 RDFS

RDF Schema (RDFS, [28]) is an extension of RDF. Whereas RDF provides just a basic vocabulary,
RDFS adds inferencing rules on top of the vocabulary. For example, RDFS provides semantics for
the rdfs:subPropertyOf predicate. If a graph states (A, rdfs:subPropertyOf,B) and (P ,A,Q),
then RDFS states that implicitly the graph also contains (P ,B ,Q).

Due to this inference, adding a triple to the graph may result in another set of implicit triples
also being present in the graph. This may be a vast number, and materializing all this data may
be a mere waste of space if it is never really used. Additionally, after removing a triple from the
graph, a lot of (implicit) data may still exist if no special care is taken to remove it. Also, these
updates become more costly if implicit data is materialized.

On the other hand, not materializing the data means the graph has to be scanned for implicit
data whenever the data is searched. This means queries are more costly, as checking for a single
triple in the graph may require several sub-queries to be performed. Essentially the finding of
implicit data is deferred until it is actually required – but updates are as efficient as they can
possibly be, because there is no need to do any work apart from inserting or removing the specific
triples.

All in all, the choice of whether to materialize implicit data or not is a trade-off between the
better performance of updates, or better performance of look-ups. It depends on how the data is
used, and how often it is updated, to determine which is the best solution for a specific graph.

As already briefly mentioned before, this research is focused on locating inferred data on
demand, without materializing the entailment of a graph. At most a small part of the entailment
will be materialized, to see its effect in reduction of I/O costs, while keeping updates reasonably
efficient as well.

The base set of rules describing the RDFS semantics can be found in appendix B.

2.4 Minimal RDFS

This study is limited to a subset of RDFS, which Muñoz et al call ρdf [13]. The selected RDFS
vocabulary is the most essential part of RDFS, as well as self-contained: it does not rely on the
RDFS vocabulary beyond the subset, nor does the rest of the RDFS vocabulary rely on this subset.

For readability, most of the terms will be abbreviated throughout this document. See table
2.1 for the vocabulary of ρdf and the corresponding abbreviations that are used. Additionally two
base terms, rdfs:Class and rdf:Property (abbreviated: class and prop respectively) will also
be used.

Muñoz et al. [13] also introduce Minimal RDFS (mrdfs) as follows:

“A minimal RDFS triple (mrdfs-triple for short) is a ground ρdf-triple having no
ρdf vocabulary as subject or object. A mrdfs-graph is a set of mrdfs-triples.”

In this definition, a ground triple is a triple without any blank nodes. A blank node is one node
in a triple, which has no literal data. They are also called anonymous resources. Blank nodes can
only be used as subject or predicate, according to the RDF standard [26].
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Property Abbreviation
rdfs:subClassOf sc

rdf:type type

rdfs:subPropertyOf sp

rdfs:domain dom

rdfs:range range

Table 2.1: ρdf vocabulary

By definition, in minimal RDFS the ρdf terms can only appear as predicate. Therefore, a
proper minimal RDFS graph will not expand RDFS as there will be no statements about any
of the terms in ρdf – the semantics do not change. This research is therefore restricted to valid
ground triples. This notion is also supported by the fact that using ρdf or RDFS keywords in the
subject or object role, is considered “non-standard use of RDFS-vocabulary” [6].

The inference rules used in mrdfs are also given, and derived from the original RDFS semantics
(see appendix B, [27]). For completeness, they can also be found in table 2.2. These rules define
under which conditions triples in specific forms can be derived.

Rule Precondition(s) Inferred

1a G, map µ : G′ → G G′

1b G, G′ ⊆ G G′

2a (A, sp,B), (B , sp,C ) (A, sp,C )
2b (A, sp,B), (X ,A,Y ) (X , type,B)
3a (A, sc,B), (B , sc,C ) (A, sc,C )
3b (A, sc,B), (X , type,A) (X , type,B)
4a (A, dom,B), (X ,A,Y ) (X , type,B)
4b (A, range,B), (X ,A,Y ) (Y , type,B)
5a (A, dom,B), (C , sp,A), (X ,C ,Y ) (X , type,B)
5b (A, range,B), (C , sp,A), (X ,C ,Y ) (Y , type,B)
6a (X ,A,Y ) (A, sp,A)
6b (A, sp,B) (A, sp,A), (B , sp,B)
6c P ∈ ρdf (P , sp,P)
6d (A,P ,X ), P ∈ {dom, range} (A, sp,A)
7a (A, sc,B) (A, sc,A), (B , sc,B)
7b (X ,P ,A), P ∈ {dom, range, type} (A, sc,A)

Table 2.2: Deductive rules for the fragment ρdf

In this study, unless otherwise stated, we will use the term graph as synonym of mrdfs-graph.

2.5 Entailment Algorithm

The algorithm which is discussed in this thesis was introduced by Muñoz et al. [13]. This algorithm
checks, in O(n log n) complexity (where n is the amount of triples in the entire graph, including
ontology) if a triple can be inferred from an RDFS graph G using the mrdfs rules. This is done
without actually materializing any inferred data.

The algorithm uses 6 steps to cover all the rules, explicitly excluding reflexivity. Each of these
steps is distinct. Depending on the triple that is checked, only one of the steps will be executed.
This mostly depends on the predicate of the triple.

The last two steps are very similar and also the most complicated steps of the algorithm. These
steps involve the implicit typing rules, which together use the entire ρdf fragment to get to an
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answer. This therefore also includes traversing parts of both the sp and sc hierarchies in order to
find the right answer.

The authors of the algorithm claim that the algorithm is “correct and complete.” The verbatim
algorithm, as originally listed in [13], table 2, is shown in listing 2.1. The algorithm checks the
existence of triple (a, p, b) in graph G.

In the algorithm and throughout the remainder of this thesis, G(x) means the sub-graph of
triples of G with predicate x. G∅ is the sub-graph of triples with a predicate that is not part of
ρdf.

1. IF p ∈ {dom, range} THEN check if (a, p, b) ∈ G(sp)
2. IF p = sp, a 6= b, THEN check if there is a path from a to b in G(sp)
3. IF p = sc, a 6= b, THEN check if there is a path from a to b in G(sc)
4. IF p /∈ ρdf THEN check if (a, p, b) ∈ G∅: if it is not:

LET G(sp)
∗

be the graph G(sp) with the following marks:
For each (u, v, w) ∈ G∅ then mark v with (u,w).

IN Check in G(sp)
∗

if there is a path from a vertex marked with (a, b) which reaches p.
5. IF p = type THEN

LET G(sp)
′

be the graph G(sp) with the following marks:
For each triple (u, dom, v) ∈ G mark the vertex u in G(sp) with d(v).
For each triple (z, e, y) ∈ G∅ mark the node e with s(z).

LET Ld be the ordered list of elements d(v) such that there is a path from v to b in G(sc).
LET Ls be the ordered list of elements s(z) such that either:

(1) in G(sp)
′

there is a path from a node marked s(z) to a node marked with an element in
Ld, or

(2) there is (z, type, v) ∈ G for d(v) ∈ Ld.
IN Check if s(a) is in Ls.

6. Repeat point 5 symmetrically for range instead of dom (making the corresponding changes).

Listing 2.1: Original algorithm of checking (minimal RDFS entailment of triple (a, b, c) [13]

2.6 B+-Trees

One of the tested physical storage mechanisms – where physical means the way data is structured
on a medium such as a hard disk – uses B+-Trees to index the data [4]. Such a tree is a structure
which makes it easy to locate specific data, including range traversal. It is not to be confused with
the term Binary Tree, although there are some similarities. A B+-Tree is a variant of a B-Tree.
The differences between these two are beyond the scope of this thesis. More detailed background
information can be found in [4].

8
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15 26

Figure 2.3: (Part of a) B+-Tree, node size 3

The structure of a B+-Tree is as follows. Each level has several nodes. Each node contains
multiple keys which can be ordered – such as natural numbers. Each of these has two pointers to
a node on a lower level: one to a node with items lower (in the ordering) than the key, the other
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one to a node with items greater than the key. Two adjacent keys in the same node share the
pointer in the middle, which points to a node with items in between the two keys.

The amount of keys in a node is the same for all, and generally depends on the amount of
keys which are expected to fit on a certain number of disk pages. This is efficient, because blocks
on disk are loaded per page. Additionally, reading sequential data from disk is faster than doing
random look-ups.

A B+-Tree is also balanced. All the leaf nodes, which point to actual data, are on the same
level. During updates, the tree is rebalanced if required, such that each node is at least full to a
certain threshold (in B+-Trees this generally means nodes must be kept at least half full).

Traversing down these B+-Trees to find an item is as easy as loading the root node, finding
out which pointer to follow and loading the next node. As each node can contain many items,
that also implies a lot of unnecessary items are also ignored on every step.

B+-Trees can store a high number of items in each node. Each level also contains a high
number of nodes (increasing exponentially). Therefore the cost to look up an item in the tree can
be done in as few as 3 or 4 disk I/Os, depending on the used node size. Even with 10 million
records and a node size of just 10 records, only 7 I/Os are required to locate an item [4].

The implementations made for this research internally use the Berkeley DB library 6. This
library implements B+-Trees. As such, in the rest of this thesis, whenever we mention B-Trees –
the basic structure of which B+-Trees are a slightly more advanced variant – we actually mean
B+-Trees.

2.7 Hash Tables

The other major structure that is used to store RDF graphs in external memory involes hash
tables. This makes use of a hashing function. Such a function takes a key to insert, and returns
a value of a specific length (in bits). All data is stored in a table with buckets, such as in figure
2.4. The buckets contain the keys and their data. The table in fact generalizes an array in which
it is possible to directly load specific data.

a

b

c

d

Keys Table

1

2

...

12

13

...

31

32

a

b

d

c

dat1

dat2

dat3

dat4

Data

Figure 2.4: Hash Table Example

The outcome of the hash function determines which bucket to place a key in. Such a bucket
can be quickly located and loaded, after which the actual data can also be found. If multiple keys
have to be placed in the same bucket – a so-called collision – the data is chained. Essentially this

6Berkeley DB: http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
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is a form of a linked list, where a linear search within a bucket (and potentially overflow buckets,
if the data in the bucket grows beyond its size) will make it possible to find the necessary item.
The technique to store these items in such a way is called chaining.

The standard methods of implementing hash tables in external memory are extendible and
linear hashing. In extendible hashing a prefix tree is used to locate items. This is a dynamical
structure which grows and shrinks gracefully [8]. In linear hashing the hash table is expanded by
a power of two every time as required [12].

Unlike B-Trees, the data is not sorted. Range traversal is therefore not possible. However,
using the hash function and loading the required bucket is generally faster than using B-Trees.
While the worst-case scenario is O(n) for hash tables (which is O(log n) for B-Trees) if all items
are located in the same bucket, the amortized performance is constant (O(1)). This does require
a good hash function, which prevents collisions as much as possible.

If the number of data items grows too large to fit in the table, it is possible to grow the
table and create extra buckets, and use a more detailed hash function. To prevent many overflow
buckets or growing the table too quickly, which both degrade the performance of hash tables, it is
important that the hash function distributes keys as evenly as possible over the available buckets.
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Chapter 3

Correctness of Entailment
Algorithm

In this chapter we will first introduce some changes and extensions made to the entailment algo-
rithm introduced in section 2.5. We will then validate the correctness of the algorithm and discuss
necessary corrections.

3.1 Validation Setup

The first step of the research is to make sure the entailment algorithm is indeed correct, based on
the ρdf rules. The algorithm was implemented as explained by Muñoz et al., although with slight
practical modifications.

3.1.1 Initial Modifications

The used algorithm in general takes the approach of marking nodes in a certain way, following by
checking if specific conditions are met using these markings. This is no problem as long as the
graph can be loaded into main memory. If it does not, these markings will have to temporarily
be materialized to disk to make it even remotely feasible to run the algorithm. It may be more
efficient if the query graph H has multiple triples in it, rather than our use case which is limited to
single triples. The markings only need to be computed once, to check whether the original graph
completely entails the target graph.

However, this research is focused on target graphs which consist of a single triple. Also, we
take the assumption that graph G is too large to fit in main memory. Therefore implementing the
algorithm straight away can be very troublesome.

For these reasons, several changes were made to the base algorithm to make it feasible to execute
the algorithm with large data sets. While the functionality and core process of the algorithm is
kept the same, details were changed so the implementation is better capable of dealing with large
data sets.

3.1.2 Reflexivity

The original authors explicitly omit sp and sc reflexivity from minimal RDFS. This is because
these reflexivity rules (rules 6 and 7 from table 2.2, table 1 of [13]) are orthogonal to the rest of
the semantics [13].

However, adding in reflexivity steps to the algorithm is fairly trivial, and does make the algo-
rithm complete for the ρdf fragment. This expansion will also not influence the complexity of the
entire algorithm, because the necessary steps can be taken in O(log n) time assuming the graph
is sorted.
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Essentially, to check for reflexive triples, it is necessary to determine whether the subject (and
object) is used as property or class respectively. This is done by checking whether specific triples
exist.

For (A, sp,A), these are the following triples and their corresponding rule numbers as given in
table 2.2. A ? marks a blank: any resource can serve as substitution for this blank, and satisfy
the query. These triples are directly and trivially derived from the rules.

• (?,A, ?) (6a)

• (A, sp, ?) (6b)

• (?, sp,A) (6b)

• (A, dom, ?) (6d)

• (A, range, ?) (6d)

Additionally, for rule (6c) it suffices to check whether the subject A in the query is part of the
ρdf fragment.

For (A, sc,A) (step 3b) the corresponding triples to check for are:

• (A, sc, ?) (7a)

• (?, sc,A) (7a)

• (?, dom,A) (7b)

• (?, range,A) (7b)

• (?, type,A) (7b)

Expanding the algorithm is simple, by adding two extra steps (named 2b and 3b respectively)
which perform these checks. Listing 3.1 shows these steps of the algorithm as they would fit in
the original algorithm.

2b. If p = sp and a = b, THEN
Check if a ∈ ρdf; if it is not:
LET G∗ be the graph G with the following marks:

For each (u, v, w) ∈ G, mark green v
For each (u, sp, w) ∈ G, mark green u and w
For each (u, dom, w) or (u, range, w) ∈ G mark green u

IN Check if vertex a is marked green.

3b. IF p = sc and a = b, THEN
LET G∗ be the graph G with the following marks:

For each (u, sc, w) ∈ G, mark green u and w
For each (u, dom, w), (u, range, w) or (u, type, w) ∈ G mark green w

IN Check if vertex a is marked green.

Listing 3.1: Algorithm steps for reflexivity

Proposition 1. Checking for reflexivity does not influence the complete algorithm’s O(n log n)
complexity.

Proof. A simple way to mark each node is by traversing all nodes in the graph G linearly. This
trivially takes |G| = n steps. The next step can linearly search the list of marked nodes to find
out if a is marked, resulting in a running time of these steps of at most O(n), which clearly is
better than O(n log n).
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The method in the proof is very naive; using smarter techniques it may very well be possible
to perform these steps more efficiently. That is beyond the focus of this thesis; we merely want to
show that the overall performance of the algorithm is not impacted by these changes.

The actual implementation that was made is slightly different from the steps presented pre-
viously. For efficiency reasons, rather than first marking green the appropriate vertices, it imme-
diately checks for matching triples in G by executing a look-up on the storage back-end. This is
more efficient, because the first positive hit can terminate the algorithm and return the answer.
This means that the actual implementation, in pseudo-code, is more like in listing 3.2.

If p = sp and a = b, THEN
IF a ∈ ρdf THEN RETURN true
ELSE IF (?, a, ?) ∈ G THEN RETURN true
ELSE IF (a, sp, ?) ∈ G THEN RETURN true
ELSE IF (?, sp, a) ∈ G THEN RETURN true
ELSE IF (a, dom, ?) ∈ G THEN RETURN true
ELSE IF (a, range, ?) ∈ G THEN RETURN true
ELSE RETURN false

If p = sc and a = b, THEN
IF (a, sc, ?) ∈ G THEN RETURN true
ELSE IF (?, sc, a) ∈ G THEN RETURN true
ELSE IF (?, dom, a) ∈ G THEN RETURN true
ELSE IF (?, range, a) ∈ G THEN RETURN true
ELSE IF (?, type, a) ∈ G THEN RETURN true
ELSE RETURN false

Listing 3.2: Pseudo-code for reflexivity

Proposition 2. The implementation of steps 2b and 3b do not influence the complete algorithm’s
O(n log n) complexity.

Proof. In a very naive approach, an unsorted graph can be checked one triple at a time (O(n)
steps) to find a match for the required triples. The proposition is therefore trivially true.

Of course a linear search is not the most optimal approach; depending on how the graph is
stored much better performance can easily be achieved. Although various (physical) representa-
tions of the data will be discussed further in this thesis, the goal of this part is merely to show
that the original complexity of the algorithm is not influenced by any changes introduced here.

Any other original refinements introduced by Muñoz are kept in place, especially the restriction
that ρdf vocabulary is not used as subject or object in triples, to avoid redefinition of RDFS. This
is considered “non-standard use of RDFS-vocabulary” [6]. As such, support for reflexivity is the
only addition to the base algorithm. Blank nodes are also not supported.

3.1.3 Modifications of Step 4

The first actual modification is in step 4 of the algorithm. This step first marks many statements
in the graph, before checking if there is a path from a specifically marked vertex to the required
property p. The proposed change is to start at p and, using G(sp) find the subproperties of p. For
each of these, as soon as they are found, the algorithm checks if (a, q, b) exists in the graph (with
q being the subproperty).

The result is that rather than marking items in G(sp) based on statements in G∅ – which can
be a very large sub-graph – the algorithm can be terminated as soon as a valid match is found.
Rather than going over the complete sub-graph G∅, only the required part of G(sp) is traversed,
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which is likely much smaller. This part is also traversed in the original algorithm, to check if there
is a valid path.

Additionally to verify that the traversal terminates, it may be necessary to keep track of which
properties were already processed earlier, such that they are not processed twice. This is to avoid
problems in case G contains cycles.

In short, the pseudo-code for the new step 4 is as in listing 3.3.

Processed = ∅
Enqueue p into queue Q
WHILE Q is not empty DO

Dequeue p′ from Q
IF p′ ∈ Processed THEN Continue with next item
Add p′ to Processed
IF (a, p′, b) ∈ G THEN RETURN true
ELSE FOR all (p′′, sp, p′) ∈ G

DO Enqueue p′′ into queue Q
RETURN false

Listing 3.3: Updated step 4

Proposition 3. The worst case running time of O(n log n) (with n = |G|) is maintained by the
change made to step 4 of the algorithm.

Proof. In the worst case scenario the algorithm traverses over all triples in graph G (n = |G|
steps). For each property, checking if the property was processed before can be done by binary
search, in O(log n) comparisons (assuming Processed is sorted).

Similarly, if G is sorted, checking for the existence of triple (a, p′, b) in G can also be done
in O(log n) steps. Sorting the graph can be done in O(n log n) if necessary, before running the
algorithm.

Recall that originally for this step, the theoretical limit was also O(n log n) due to the con-
struction of G(sp)∗ in the original algorithm. All in all the changes are not expected to have a
negative impact.

3.1.4 Modifications of Steps 5 and 6

For efficiency reasons, steps 5 and 6 were merged into one step. This allows for constructing Ld
(step 5) and Lr (the counterpart of Ld in step 6) in one run. Rather than finding all domains
and ranges for all classes, and marking them appropriately as suggested in the original algorithm,
these lists are built by looking up the superclasses of b. For each superclass v, all matching u
atoms in (u, dom, v) are put in Ld. Similarly, the w in (w, range, x) is placed in Lr. Both lists Ld
and Lr are now constructed as specified in the original algorithm.

Constructing Ls explicitly is also omitted. This is originally constructed using triples in G∅
and checking if the predicate is a subproperty of an item in Ld or Lr, and then marking the subject
and object appropriately.

Instead of this method, each property in Ld and Lr are used as base. From each such property
p′, a look-up is performed for (a, p′, ?) if p′ is in Ld, or (?, p′, a) if p′ is in Lr. Both look-ups are
performed if a property occurs in both lists. From the base, the superproperties are also traversed
using the same domain or range role, using similar look-ups.

To prevent traversing parts of the subproperty tree twice – once for Ld and once for Lr –
two sets are kept which indicate which properties have been processed in which role (domain or
range). This may not always help, since a property and all its subproperties may be processed in
the domain role, before the initial property is discovered as being valid in range role as well, or
vice versa. However, in practice this is not very likely to happen.
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Whenever a look-up yields a positive result, a is indeed of the requested type b. The algorithm
will then terminate early. In pseudo-code the entire procedure is as in listing 3.4

Enqueue b into queue Q
WHILE Q is not empty DO

dequeue b′ from Q
FOR all triples (d, dom, b′) ∈ G DO put d in Ld
FOR all triples (r, range, b′) ∈ G DO put r in Lr
FOR all (b′′, sc, b′) ∈ G DO enqueue b′′ into queue Q

FOR all properties p ∈ Ld ∪ Lr
DO enqueue p′ in R

inLd = Ld, inLr = Lr
ProcessedLd = ProcessedLr = ∅

WHILE R is not empty DO
dequeue p′ from R

Verify that item p′ has not yet been processed already:
− doLd = (p′ ∈ inLd ∧ p′ /∈ ProcessedLd)
− doLr = (p′ ∈ inLr ∧ p′ /∈ ProcessedLr)

IF ¬(doLd ∨ doLr) THEN continue with next item

IF doLd THEN
− IF (a, p′, ?) ∈ G THEN RETURN true
− add p′ to ProcessedLd
IF doLr THEN
− IF (?, p′, a) ∈ G THEN RETURN true
− add p′ to ProcessedLr

FOR all (p′′, sp, p′) ∈ G DO
IF doLd THEN add p′′ to inLd
IF doLr THEN add p′′ to inLr
enqueue p′′ to R

RETURN false

Listing 3.4: Updated steps 5 and 6

Proposition 4. The modifications to steps 5 and 6 of the algorithm do not influence the algo-
rithm’s worst case running time of O(n log n).

Proof. Clearly the construction of Ld and Lr can be done in at most n steps. The second part
may go over n triples (at most twice), each time checking if it was previously processed. Those
checks can be performed in O(log n) using binary search. Similarly, checking for all triples in G
can be done in O(log n). All in all the worst case theoretical complexity is O(n log n).

These last two changes do not affect the complexity of the algorithm, but do have several
practical benefits which are expected to perform better than the original. This is mostly because
only the required parts of the sp and sc sub-graphs are traversed, and the algorithm can terminate
earlier if a match is found.

17



CHAPTER 3. CORRECTNESS OF ENTAILMENT ALGORITHM

3.2 Validation

To verify the correctness of the algorithm initially a fairly simple back-end, using the relational
database MySQL, was implemented. See section 5.1 for more details regarding the global archi-
tecture. This back-end focused purely on functionality; its performance does not matter. Because
of available abstraction layers it was easy to correctly create this implementation.

Using this storage back-end, small testing graphs were created after which the algorithm was
executed with different queries. Due to the small size of these graphs, it is possible to verify the
correctness of the answers using manual inspection.

One erroor in the algorithm was discovered. While it could have been an implementation
mistake, further investigation learned that this was not the case. The theoretical version of the
algorithm is (subtly) incomplete.

The rule in question is rule 3b. Given a graph with (only) triples (a, type, b) and (b, sc, c), the
triple (a, type, c) was not found as being in the entailment. Rule 3b directly states this should be
found, though.

It is true that rule 3b is used in the proof and the algorithm itself, but only indirectly if the
resource a in the query is also actually used using a property with a domain (or range), which has
a subclass relation with the target b. In other words: rule 3b is only applied in combination with
rule 4.

All in all an extra addition needs to be made to step 5 of the algortihm, which answers these
type-queries. First, a list is built using all (x, type, w) triples in the graph. Each node x is marked
t(w) in G(sc).

The (ordered) list Lt can then be constructed by taking all elements t(w) with a path from w
to target b in G(sc). In other words: (w, sc, b) holds in the graph. Finally, list Ls is expanded
with those items s(z) such that node z is marked with an element t(w) ∈ Lt. In short, this implies
there is a (z, type, w) triple, for which (w, sc, b) holds. The (existing) check for the existance of
an element s(a) in this list Ls then implies the existence of the query (a, type, b).

There is no need to update step 6, since the domain and range do not play a role in these
additions. Alternatively a complete separate step can be added to the algorithm, which performs
the required checks for rule 3b.

Step 5 with these additions will then become as in listing 3.5. The newly added lines are
marked with a +.

IF p = type THEN

LET G(sp)
′

be the graph G(sp) with the following marks:
For each triple (u, dom, v) ∈ G mark the vertex u in G(sp) with d(v).

+ For each triple (x, type, w) ∈ G mark the vertex x in G(sc) with t(w).
For each triple (z, e, y) ∈ G∅ mark the node e with s(z).

LET Ld be the ordered list of elements d(v) such that there is a path from v to b in G(sc).
+ LET Lt be the ordered list of elements t(w) such that there is a path from w to b in G(sc).

LET Ls be the ordered list of elements s(z) such that either:

(1) in G(sp)
′

there is a path from a node marked s(z) to a node marked with an element in
Ld, or

(2) there is (z, type, v) ∈ G for d(v) ∈ Ld.
+ (3) there is (z, type, w) ∈ G for t(w) ∈ Lt.

IN Check if s(a) is in Ls.

Listing 3.5: Corrected step 5

The correctness of the extra steps follows from inspection of the rules. In this particular case,
rule 3b is used once, followed by zero or more applications of rule 3a, as explained. The first extra
line in the algorithm marks t(x) if there is a triple (a, type, x) ∈ G (for any x). The second line
filters out those t(x) elements for which x is not a subclass of b. Finally, s(a) is added to Ls if a
is marked with any t(x) ∈ Lt.
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It is also clear that the complexity is not affected, as the additions are of a very similar form
as already existing lines. Obviously the same techniques can be used to construct and inspect Lt.

The actual implementation is somewhat different, as discussed previously. Together with the
correction, the pseudo-code for step 5 is as in listing 3.6. This updated version returns true as
soon as a valid (a, type, b′) triple is found, for which (b′, sc, b) holds. Checking for this triple is
the only necessary addition in this version.

Enqueue b into queue Q
WHILE Q is not empty DO

dequeue b′ from Q
+ IF (a, type, b′) ∈ G THEN RETURN true

FOR all triples (d, dom, b′) ∈ G DO put d in Ld
FOR all triples (r, range, b′) ∈ G DO put r in Lr
FOR all (b′′, sc, b′) ∈ G DO enqueue b′′ into queue Q

FOR all properties p ∈ Ld ∪ Lr
DO enqueue p′ in R

inLd = Ld, inLr = Lr
ProcessedLd = ProcessedLr = ∅

WHILE R is not empty DO
dequeue p′ from R

Verify that item p′ has not yet been processed already:
− doLd = p′ ∈ inLd ∧ p′ /∈ ProcessedLd
− doLr = p′ ∈ inLr ∧ p′ /∈ ProcessedLr

IF ¬(doLd ∨ doLr) THEN continue with next item

IF doLd THEN
− IF (a, p′, ?) ∈ G THEN RETURN true
− add p′ to ProcessedLd
IF doLr THEN
− IF (?, p′, a) ∈ G THEN RETURN true
− add p′ to ProcessedLr

FOR all (p′′, sp, p′) ∈ G DO
IF doLd THEN add p′′ to inLd
IF doLr THEN add p′′ to inLr
enqueue p′′ to R

RETURN false

Listing 3.6: Corrected step 5 and 6 pseudo code

The only extra step in this implementation is that there is an additional look-up for a specific
triple, while traversing the sub-graph G(sc). This look-up can be performed on O(log n) or better
(using a sorted graph G). Therefore the change does not impact the total complexity of O(n log n).
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Chapter 4

Experimental Setup

In this chapter we will start by discussing three methods of storing RDFS graphs in external
memory. After that the methods of generating test data and their corresponding queries for the
experiments are described.

4.1 Indexes

The main purpose of the research was to investigate the performance of the algorithm over three
basic physical representations of RDF graphs. The algorithm is deemed to be realistic enough
for the experiments. Also the algorithm provides enough variety to deal with different types of
queries. It is possible to use it for single look-ups, semi-complex queries which require a limited
amount of traversal or inference, and complex queries which will need to do larger traversals to
check if a triple exists in graph G. All of this is done without materializing the complete entailment
of the graph.

Three methods of storing the RDFS data sets are compared. We will compare the currently
most used standard, the state of the art method and an extension to this method. These three
different indexes are:

• B-Tree (The current standard)

• Triple-T (State of the art)

• Triple-T with neighbor information (Our extension in this investigation)

4.1.1 B+-Tree Index

The B+-tree index actually consists of three sub-indexes. The method is widely used in common,
commercial RDF storage systems such as Virtuoso [16] as well as academic projects such as RDF-
3X [14]. Despite other proposed structures which research often shows performs better, this
storage mechanism is currently the most commonly used.

The three sub-indexes make it possible to find triples with one or more blank atoms in the
query. Each index contains the whole triple, with the atoms in a specific order. The first index,
SOP, has triples encoded in the order of subject, object and finally predicate. PSO encodes the
triples in predicate, subject, object order, and finally OSP uses the order, subject, predicate order.
As we will discuss later, a variant uses the OPS order instead of OSP for performance reasons.

The rationale for these orderings is that in most graphs, the subject atom is expected to be
the most selective. This means the expected number of triples in the graph with a specific atom
in the subject role is lower than the number of triples with a specific atom in the predicate or
object role. After the subject, the object role is considered to be the most selective, followed by
the predicate.
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The predicate often contains atoms from the (relatively small) ontology, which means predicates
are often reused across triples. Similarly it is expected that the range of these predicates contains
a limited set of values. As such the object role is less selective than the subject, which can be
anything.

Although we assume this selectivity order, it may be wise to use a different selectivity order if
a graph behaves differently, and adapt the indexes to match that.

To make each sub-index sortable properly, the three items of a triple are concatenated, each
prefixed by their individual length in two bytes. The required sorting is preserved, while there is
no risk of confusion that may occur if, for example, UTF encoding is used and the three items
are separated by 0-bytes (which is another historically common string encoding method). Due
the the prefix, sorting is primarily done on the byte length of the atom (generally the amount of
characters), followed by a lexicographical sorting. As the bytes are compared directly and they
are UTF encoded, uppercase letters are ordered in front of lowercase letters.

This sorting is fine because we do not actually need to do any range-traversal using the data.
We only really need to make sure the items are grouped properly: first on the primary atom, then
the secondary.

Each index is a B+-tree on its own. Because all data is sorted, finding the appropriate position
of a full triple can be found by traversing the tree top-down. How a lookup is executed exactly,
depends on the amount of fixed atoms in the query.

Consider the sample graph G which contains the following triples, describing a fictional office:
(Peter, worksFor, Initech), (Milton, worksFor, Initech), (Initech, boss, Bill) and (stapler, missin-
gAt, Initech). This would produce data in each index as in table 4.1. Note that sorting is taken
care of in the example.

SOP PSO OSP

(Peter, Initech, worksFor) (boss, Initech, Bill) (Bill, Initech, boss)
(Milton, Initech, worksFor) (worksFor, Peter, Initech) (Initech, Peter, worksFor)
(Initech, Bill, boss) (worksFor, Milton, Initech) (Initech, Milton, worksFor)
(stapler, Initech, missingAt) (missingAt, stapler, Initech) (Initech, stapler, missingAt)

Table 4.1: Sample graph as materialized in B-Tree

If all three atoms are fixed, there can be only one match. The SOP index will always be
preferred. It does not really matter which index is used though. The B+-tree is traversed down,
to find the precise match of the triple. If the leaf bucket does not contain the triple, a negative
answer will be returned.

If there is at least one free atom in the triple, the best index will be chosen depending on the
available atoms. If the subject is unknown, the OSP index will be used, since the object is the
most selective of the two available atoms. If the predicate is unkown, SOP is the best choice. If
the object is unknown, PSO is used. Using that index saves having to check many items with the
proper subject, as would be the case with the SOP index.

The B+-Tree can in this case – except for the unknown subject – be used to find the first triple
in the index, which has the two known items in the right place. Then all items next to it can be
scanned and loaded, up until the point where the primary and secondary items no longer match.
All these scanned triples are returned as matches of the query.

If the subject is the unknown atom, only the correct object can be found using the index. The
first triple with this object is located, and all its triples are scanned linearly. All items with a
matching predicate will be added to the result set, others are skipped. This scanning continues
until the first triple with a non-matching object is located.

If OSP was replaced with an OPS index for this case, it is expected that better performance
would be achieved as the need to traverse all subjects of triples with the object would be removed.
This may be beneficial, but not necessarily. It is no unlikely that all the triples with a single object
are still located on the same page in the index, and therefore no extra I/O costs are involved for
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this scanning. As such, a downside of using OPS is that data locality is reduced which may in fact
in some cases have a negative impact on performance.

For these reasons both variants (OSP and OPS) were tested in the experiments. The SOP and
PSO indexes were kept the same, as following the selectivity reasoning they are already most likely
to be the most efficient.

Then there is the case of having just one known atom. In this case it depends solely on the
known triple which of the three indexes is used. The index finds the first matching triple and then
scans all matching triples in a similar fashion as before.

4.1.2 Triple-T Index

The Triple-T index is designed by Fletcher and Beck [9]. One of the key points of this index
is that data locality can make joins more efficient. Specific queries are therefore answered more
efficiently.

Whereas the B-Tree index is statement-centric – complete triples are indexed – the Triple-T
index is atom-centric. In the original design, the index contains only the atoms themselves. Each
item points to a payload of three buckets. Similarly to the B-Tree index these are in SOP, PSO and
OSP orderings, with an alternative version having SOP, PSO and OPS orderings. The first atom in
each of these buckets is left out of the payload, as this is the role of the indexed atom.

As such, for a triple (A,P ,B), each of the three atoms are indexed. The “subject” bucket of A
contains the item (B ,P). The “predicate” bucket of P has (A,B) and the object bucket of B has
an item (A,P) in it. The buckets are sorted, to make finding matching items possible in O(log n)
using binary search.

Reusing the same sample graph as for B+-Trees, the data would be materialized as in table
4.2. As we will discuss below, the primary atoms are not sorted in any way. Inside each bucket
the items are sorted lexicographically.

Primary Atom Subject bucket Predicate bucket Object bucket
Bill (Initech, boss)
boss (Initech, Bill)
Initech (Milton, worksFor)

(Peter, worksFor)
(stapler, missingAt)

Milton
missingAt (stapler, Initech)
Peter (Initech, worksFor)
stapler (Initech, missingAt)
worksFor (Milton, Initech)

(Peter, Initech)

Table 4.2: Sample graph as materialized in Triple-T

To find a triple, the used index depends solely on whether the subject, object or predicate (in
that order) in the query is fixed. This order is explained by the selectivity of these three atoms.
As the payload data will generally be loaded completely into memory, as discussed below, the
internal sorting will only make a minor difference in performance. After all, there is no difference
in the I/O costs involved in loading the data.

This difference means a different payload is selected for those triples where the subject and
predicate are known, but the object is unkown. The B-Tree index would use the PSO order: this
saves having to look through many objects (the secondary atom in the SOP order) to find those
objects which are used in conjunction with the required predicate.

It is however best to load as little data into memory as possible. Because the subject is
considered more selective it will generally have fewer triples in its payload. This means the I/O
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costs for loading the subject data will be lower. Therefore, using the SOP index instead of PSO is
expected to generally perform better for these kinds of queries.

As there is slightly less overhead in storing the triples, the space consumption of Triple-T is
lower than that of the B-Tree index. Increased data locality also improves efficiency.

Hash Index

The implemented version of Triple-T has some slight modifications, mostly for practical reasons.
First, the main index uses a hash-based index, rather than a B-Tree. As the used algorithm does
not have ordering constraints in the sub-queries (such as “the object is lower than 5”), using a
B-Tree which is sorted is not necessary. In general hash tables use fewer I/Os than B-Trees to do
look-ups.

Using a hash table as base for the B-Tree approach is not possible. In many cases the look-ups
that occur do not include all three atoms of a triple. Because the B-Tree index is built using
complete triples, range traversal is required to prevent having to scan the complete index to find
triples if not all parts are known. In Triple-T the index contains single atoms, which removes the
need of these range checks.

A hash index is built up such that each key in the index is hashed using a special function. This
function should construct a hash that evenly distributes the unique values in separate buckets.
There is a limited bucket size. Whenever a bucket grows too large, the hash table size will be
increased by splitting the bucket.

Split Index

Because Berkeley DB only supports storing key/value pairs, the payload of a key must be loaded
in its entirety at any time. As such it is not possible to skip reading unnecessary buckets and scan
only the required parts on disk. To save disk I/O costs, a few more changes were applied.

The main change this has caused is that rather than storing the atom in the index, with its
three buckets as the value of the pair, the buckets are indexed separately. In the index, the key is
prefixed with an indicator of which triple bucket the value has. In the current use case that does
not hurt performance, as the look-ups never require multiple roles of one atom after each other. In
the complex parts of the algorithm only chains of triples with transitive predicates are traversed.
For each step in this traversal either the subject or object of the next triple is known; and this
will change after every step.

Because of that, loading the two other buckets of the payload every time would be useless. As
the size of multiple buckets obviously is more likely to exceed a number of disk pages, this could
also lead to extra I/O costs. Therefore having each atom in the index up to three times – once
for each bucket – is likely to be slightly more efficient.

Secondary B-Trees

In the tested data sets, some resources occur in the same role very frequently. Some data is
explicitly stored in the graph, such as the types of all properties and classes (statements such as
(CLASSX , type, class) and (PROPY , type, prop)) as well as the many sp and sc triples.

Whenever a lookup on these frequent atoms is required, Berkeley DB would require to load
the entire sub-graph in memory. Additionally, when updating such a value in the data store, the
same data had to be loaded, updated and then stored again, which is highly inefficient if the data
is too large.

Therefore a “secondary” B-Tree is spawned for each frequent triple whose data size grows too
large. This B-Tree indexes only the secondary and tertiary atoms of the bucket. Each of these
B-Trees contains the data of exactly one bucket. Because of the I/O overhead to search through
this B-Tree (estimated at four disk pages which need to be read), the threshold to spawn this
B-Tree is set to a value corresponding to four disk pages.

Using this threshold, it does not matter if either the minimum of five disk pages are loaded to
retrieve all data at once, or to look up the items through the B-Tree. Since most frequent triples
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in the used data are so frequent that they take up many more pages than these five, this solution
is much more efficient.

Compression

The second real change made in comparison to the original proposal is to compress the pay-
loads in the hash index. By using compression the chances of the data spanning multiple disk
pages becomes smaller, which will save disk I/Os. To perform the compression, the common zlib
compression1 method is used.

Compression is applied regardless of the data size. This may, if the data is very small, actually
result in a slightly larger payload than the original data size [17]. For this to occur the data has
to be only a few bytes in size though; the added overhead for zlib will then still not cause the
payload to grow beyond one disk page, which is typically 4096 bytes.

The main downside is that compressing and decompressing the data causes additional CPU
overhead while loading or saving data. This may cost extra wall clock time. However the goal of
this thesis is to reduce I/O costs as much as possible. Smarter strategies to determine whether
compression should be applied or not can improve performance of the Triple-T implementation.

Neighbor Data

To make it possible to use one implementation for the base Triple-T index and the Triple-T index
with distance – to be discussed next – extra distance information is added to the payloads. This
adds overhead of one byte per triple. Obviously it is unlikely that exactly these few bytes cause
additional pages to be required to store a bucket.

When secondary B-Trees are used this does imply that besides the key itself, a value is stored,
but only if the distance is greater than 0. In the regular Triple-T version that means there is no
difference in I/O costs for secondary B-Trees.

4.1.3 Triple-T Index with Neighbor Data

As already briefly mentioned in the Triple-T description, this enhanced Triple-T version (“Triple-
T with distance” or Triple-T+d) adds extra information about the distance between subject and
object. The basics are all the same as with the regular Triple-T information. The index mainly
adds the option to materialize a small part of the closure when updating the index.

The index recognizes two atoms as being transitive: sp and sc. This follows from rules 2a
and 3a in [13]. Additionally the maximum distance to materialize is configurable. By default this
is set to 0, which implies not materializing anything extra. This default will behave the same as
the regular Triple-T method. Therefore one generalized implementation was made, to minimize
variance between the two implementations. During the experiments merely the materialization
distance was configured to change the behavior.

This index adds a fourth element to each triple: the distance it covers. Direct relations, which
are not inferred, have distance 0. A distance of 0 is not actually stored in the implementation;
rather, if no data is found when looking up a triple, distance 0 is assumed.

For triples with one of the transitive atoms as predicate, the index maintains some inferred
triples up to the configured distance. All triples are stored at most once, with the lowest discovered
distance. The process to keep the index up-to-date is discussed below.

Consider a graph with non-inferred triples (a, sp, b), (a, sp, c), (b, sp, c), (b, sp, d), (c, sp, e) and
(e, sp, f). Each of these have distance 0. When materializing triples up to distance 1 the triples
that are stored are shown in table 4.3.

The triple (a, sp, c) is stored with the lowest distance encountered: 0. However, removing
the non-inferred (a, sp, c) would result in a new inferred triple (a, sp, c) with distance 1 (through
(b, sp, c)). Also, the distance of (a, sp, f) would have a distance of 2 and is therefore not materi-
alized.

1zlib: http://zlib.net
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Triple Distance
(a, sp, b) 0
(a, sp, c) 0
(b, sp, c) 0
(b, sp, d) 0
(c, sp, e) 0
(e, sp, f) 0
(a, sp, d) 1
(a, sp, e) 1
(c, sp, f) 1

Table 4.3: Materialized triples in Triple-T with distance up to 1

Insertion

If this distance is set to 1 or higher, upon insertion of a triple the direct “neighbors” are inspected.
For example, when inserting (a, sp, b) the triples of the form (?, sp, a) and (b, sp, ?) are loaded from
the index. The returned data contains a fourth element, the distance covered by the mentioned
triple.

For each of the triples in this set, the appropriate extra triples are materialized if the new
triple’s distance doesn’t exceed the maximal configured distance. The triples on the left and
right of the newly inserted triple are also combined, such that new paths which jump over the
newly inserted triple are also properly materialized. This keeps the index consistent. No recursion
is required: the payloads of neighboring atoms will contain enough information to discover all
inferred triples, since they will have their neighbors readily available in the index.

Removal

Removing a triple is slightly more complicated. This is mainly because there is no guarantee
that triples which are possibly inferred by the removed triple are no longer inferrable (within the
configuration limits) after removing the triple. In fact, the base triple which is removed might still
be inferrable through other triples.

As such the removal of a triple takes place in two steps. First all possibly inferred triples are also
removed. This includes only those materialized triples where the distance matches the inference
distance. If the distance is different, the materialized version has a lower distance (keeping in
mind that only the smallest distance is stored). This inference can then not occur through the
just removed triple.

The next step is to check for each removed triple, if it is still inferrable within the configured
bounds. If a triple (a, p, c) is still inferrable, there is a triple (a, p, b) with distance 0 and a triple
(b, p, c) with any distance d, for which d+ 1 is lower than the configured maximum distance.

It is possible to retrieve these triples by doing two look-ups in the index. The first is to find
all bs using the index of a as subject. The second look-up is to use b as subject, and to check if
the pair (c,p) occurs in the payload (recall the SOP ordering of the bucket).

Also, all possible matching bs have to be checked. There may be multiple matching paths,
but it is not possible to determine beforehand if a specific b results in the shortest path inferring
(a, p, c). The shortest distance of this triple needs to be reinserted.

This insertion is performed in the same way as any other triple insertion. The main difference
is that the initially inserted triple has a higher distance than 0. This is a simple generalization in
the insertion algorithm, which needs to take the base triple’s distance into account when finding
the inferred triples to materialize.

As there may be multiple triples which have been removed initially, one may at first not
be reinserted because the required interim triple (b, p, c) was removed earlier, and was not yet
materialized because it is later in the list to check for reinsertion. When that triple is inserted
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later on, the insert algorithm will correctly update the index by inserting triples which were skipped
earlier.

As shown, updates to graphs using this partial materialization is not trivial. While inserting
new data can still happen in constant time by just checking the neighbors, removing a materialized
triple can have a noticable impact on performance. Of course the level of this impact depends on
the degree of the nodes, as well as the distance up to which triples are materialized.

There may also be extra page I/Os to do a single look-up, due to increased payload sizes if part
of the entailment is materialized. While checking for a chain of triples with a transitive predicate,
fewer look-ups have to be done in total. Because each look-up can easily use 3 or 4 page reads,
the extra costs quickly pay off – especially as soon as two or more traversal steps in the algorithm
can be skipped.

This extra data is materialized only for triples with transitive predicates. These are usually
in the ontology. The instance data is left untouched. For example, the mrdfs rules state that
(A, sp,B) and (X ,A,Y ) infer (X ,B ,Y ). However, when a graph already contains (X ,A,Y ) and
the triple (A, sp,B) is inserted, the inferred triple is not materialized.

4.1.4 Expected Results

It has already been shown that the use of Triple-T is likely to achieve better performance than
the B-Tree index [9]. The same is expected to hold when using external memory to store all data.
The impact of the applied changes to the original version of Triple-T are also expected to benefit
Triple-T even more..

Running queries using transitive predicates – which make up the complex parts of the entail-
ment algorithm – are expected to yield better results when part of the closure is materialized, as
in Triple-T+d. This does require a small adjustment in the algorithm.

The normal procedure to check if a path from a to b exists using a predicate p, is to pick a
starting point (a or b) and find all initial triples ((a, p, ?) and (?, p, b)). For every result of this
look-up, the same step is repeated until either there are no results anymore, or the requested path
is found.

With the extra materialized triples these sub-queries will immediately return triples one or
more steps further. Any returned triple with a distance lower than the maximum does not need
to be traversed over; the data that would return, is either already in the result set, or it will be
found through the traversal on those triples with the maximum distance.

While the B-Tree and base Triple-T indexes will not benefit from this extra logic, they are also
not negatively impacted. When using Triple-T with distance having to do fewer look-ups in the
data set will give the index an advantage, especially for those transitive queries.

Summarized, the expectations of the performance of the three indexes are (from worst to best):

Look-up with non-transitive predicate: B-Tree, then Triple-T and Triple-T+d (which will
perform equally well).

Single look-up with transitive predicate: B-Tree, then Triple-T+d, then Triple-T. The dif-
ference between Triple-T+d and Triple-T is expected to be minimal.

Traversing transitive predicate: B-Tree, then Triple-T and finally Triple-T+d.

Data size: B-Tree is expected to be the largest, followed by Triple-T+d, with Triple-T being the
smallest.

In conclusion, Triple-T+d is expected to perform the best in real-world scenarios, when doing
look-ups. We will not be comparing update costs of these indexes, but at least updating will
be more costly in Triple-T+d than in Triple-T, when the updated triple contains a transitive
predicate.

Whether using Triple-T+d over Triple-T is beneficial in real-world scenarios depends mostly on
how often the ontology is updated, the size of the ontology and if triples with transitive predicates
such as sp and sc are regularly updated.
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4.2 Test Data

The complexity of the tested algorithm in this thesis depends mostly on the ontology size. Larger
and more complex subclass and subproperty graphs imply that the algorithm has to traverse more
triples in these trees. Therefore, to properly test the algorithm to the fullest and compare the
different indexing methods, synthetic data has to be generated. Preferrably this data follows a
realistic structure, but it has to be sufficiently large to ensure that the algorithm is realistically
capable of dealing with large data sets – up to a size larger than commonly found in Semantic
Web data.

As shown in earlier research, many realistic structures follow a power-law distribution. This
is not restricted to Semantic Web data alone [3, 23, 24]. In the sense of the RDFS graphs, this
means the top level classes and properties in the sc and sp sub-graphs have a high degree. The
degree per node decreases in each level. Therefore the top class has many subclasses, but each of
those has fewer subclasses. Because of that, sc and sp graphs are generally shallow.

We will discuss two types of generated data sets. For each type, multiple graphs of different
sizes were generated.

4.2.1 PoweRGen

The first attempt in this was made using PoweRGen, a tool from ICS-FORTH [23]. This was
created by Yannis Theoharis as part of his Master’s project, and is designed to create realistic
Semantic Web graphs.

Unfortunately there were several practical limits in using this tool. The main problem is
memory consumption. In order to generate all data, several large structures are kept in memory.
A linear problem (simplex) solver processes the data to generate a structure. For sufficiently
large graphs, containing more than several thousands of classes or properties, the tool consumed
all available memory or was terminated because it exceeded the java (32 bit) limit of 4 Gb of
memory.

Additionally, for unclear reasons, the tool could not create data sets with both subclass and
subproperty graphs. As such two separate executions were made to create subclass graphs. In
one of these, all classes were renamed to properties and the subclass relations were changed to
subproperty relations, for the purpose of this thesis.

It also turned out that if the same parameters are used, the structure of the subclass and
subproperty graphs is exactly the same. This means there is little variation in the sub-graphs.
This is supported by the repetition in the average length of sp and sc chains, as shown in table
4.4. All in all, while the structure of the graphs is expected to be realistic, the size and complexity
is fairly limited.

Because of the aforementioned problems, it was not possible to generate large graphs using this
tool. Instead, to make the graphs sufficiently large for the experiments, they were combined. An
extra class was added, to which up to a 100 graphs were connected through a triple of the form
(CLASS0 , sc,NEWCLASS ). Each data set also has all classes, properties and atoms prefixed
with a unique prefix, to make them distinguishable. If more than 100 graphs were added, multiple
extra classes were added, which were in turn also connected in the same manner using another
extra class. This process was repeated for properties in the generated data.

PoweRGen also does not generate any instance data, which is required for the algorithm we
focus on in this research. Therefore instance data was generated after merging several smaller
graphs. PoweRGen already defined domains and ranges for the properties it had generated. For
the extra properties generated to expand the graphs, domains and ranges were not defined. The
queries generated for these graphs did not require this information, as we will discuss later.

The instance data was generated as follows: for each class in the graph, 10 instance atoms
were defined. The list of properties using the class as either domain or range was collected. If
the property list was empty, or with a 25% chance, the type was assigned directly to the class, by
adding a triple of the form (ATOMX , type,CLASSY ). Otherwise, a random property is chosen
from the collection of available properties.
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The property has the class as domain, range, or both. If both, the atom is randomly assigned
as domain or range with a 50% chance for each. A random atom of the other class is picked, and
a triple (ATOMX ,PROPERTYX ,ATOMB) is added to the database.

Several characteristics, such as the sp and sc chain lengths were extracted from the data sets.
These are presented in table 4.4. The n column represents the amount of smaller graphs combined
into the data set. Each sub-graph contains 1,000 classes and properties each. The total degree
(totalDegreeVRExp) is set to 0.7. The chances of a class having a degree of 0 (i.e. classes which
do not have subclasses and are not a subclass themselves, p0) was set to 0.25. Another 25% of
the classes are leafs (percentageOfZeros). The percentage of properties with equal domain and
ranges (selfLoops) was set to 0.126, and the target depth (depth) was set to 10.

The contents of the used parameters.conf is in listing A.1 (appendix A). This excludes the path
configuration. For each graph, PoweRGen was run twice: once to generate a sc graph, and once
to create the taxonomy which defines the properties, sp relations and domains/properties of the
properties. Due to problems with the tool, this could not be properly done in one run.

Set n Total triples

100 100 1,459,711
200 200 2,919,438
400 400 5,838,863
500 500 7,298,576
750 750 10,947,865
1000 1,000 14,597,136

(a) Basic statistics
Set sp Triples sp Chains Max sp chain length Avg sp chain length

100 30,100 29,800 4 1.326
200 60,202 59,600 5 1.510
400 120,404 119,200 5 1.510
500 150,505 149,000 5 1.510
750 225,758 223,500 5 1.510
1000 301,010 298,000 5 1.510

(b) sp Subgraph statistics
Set sc Triples sc Chains Max sc chain length Avg sc chain length

100 29,600 29,200 4 1.897
200 59,202 58,400 5 2.086
400 118,404 116,800 5 2.086
500 148,005 146,000 5 2.086
750 222,008 219,000 5 2.086
1000 296,010 292,000 5 2.086

(c) sc Subgraph statistics

Table 4.4: PoweRGen Sets Statistics

4.2.2 Boost Graph Data

To make it possible to have deeper graphs, another approach was also taken to generate synthetic
data. The data sets needed to be sufficiently large, with the property and class sub-graphs suf-
ficiently deep. Additionally to make the graphs resemble realistic ontologies, it is required that
these sub-graphs follow the power law structure.

To achieve this, the Boost C++ libraries2 were used – specifically Boost Graph. This library
is able to generate graphs following a Power Law Out Degree algorithm. This algorithm generates

2Boost C++ Libraries: http://www.boost.org/
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a graph from three parameters, n, α and β. Each vertex in the graph (n in total) is allocated a
number of credits, using a power-law distribution. Edges are added and in each case a credit is
deducted from the source vertex. The β and α parameters define the initial number of credits,
β · xα with x a random value between 0 and n − 1. The β parameter therefore influences the
average degree of vertices, whereas α determines how steeply the power-law curve drops off. A
large α value indicates a steep curve [7].

By running this algorithm twice, the required subproperty and subclass relations are created.
This did result in many cycles in these graphs. Since a hierarchical structure is more realistic in
ontologies (although not required by RDFS), and also has less complexities in computing statistics
of the graphs, these cycles were removed. By keeping track of the processed properties or classes
while doing traversal over these trees during the main algorithm, the existence of cycles can be
checked and termination of the process can be guaranteed.

To combine the two sub-graphs each property was assigned a domain and range from the list of
classes. Of 12.5% of the properties RDF literals were assigned as domain or range. The necessary
instance data was generated in the same way as with the PoweRGen data.

Several of these data sets were generated. Each one was created using the n parameter of the
algorithm as main varying factor. The values used are 500,000, 1 million, 2 million and 4 million
respectively. The α parameter was set to 0.7 every time, the β parameter was adjusted to generate
sufficiently deep graphs. The value for α was chosen to get a good combination of deep graphs,
with the root nodes having a high degree. It may not be the most realistic scenario, but these
data sets were designed to be generally worse cases than realistic data sets.

The total size of the graphs is somewhere in between 15 and 16 times the value of the n
parameter. This can be split up as follows:

• 2 times n type statements of the classes and properties

• 2 times n dom and range statements respectively, for each property

• 10 instance atoms/statements per class, for n classes

• 1 to 2 times n atoms for the subproperty and subclass information.

The first three items in the list are by definition. The last item depends on the randomly
generated graphs, and may vary. The exact statistics of the data sets can be found in table 4.5.

4.3 Queries

After creating the data sets, it became possible to extract queries from these sets. There are
various distinct steps in the algorithm, of which at any time just one step is executed (taking into
consideration that steps 5 and 6 are combined to one step).

To compare the physical representations with different use cases, four classes of queries were
constructed. The first class (see figure 4.1a) is a simple look-up. It executes step 1 by checking
for a triple of the form (?, dom, ?) or (?, range, ?), of which the subject is a known property and
the object a known class.

The second class is a single-step traversal using sp (see figure 4.1b). First the disconnected
sp-triples were found. These are triples (A, sp,B) for which A and B are not used in any other
sp-triples. For a random selection of these, a random triple of the form (P ,A,Q) is looked up.
Subject P and object Q in such triples are instance atoms. The query then becomes (P ,B ,Q).
This is a direct application of rule 3b.

The third class is very similar to the second (see figure 4.1b), except there is no limitation to
the length of the sp-chain. In fact, the longest chains were located first and used as base for the
queries. An instance using the lowest subproperty in a chain was located as (P ,A,Q). A query
then becomes (P ,B ,Q) with B the highest superproperty in the chain (i.e. (A, sp,B) exists in
the graph or its entailment).
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Set n α β Total triples

500k 500,000 0.7 5,000 8,028,454
1m 1,000,000 0.7 7,500 15,853,402
2m 2,000,000 0.7 13,000 32,109,285
4m 4,000,000 0.7 20,000 63,649,886

(a) Basic statistics
Set sp Triples sp Chains Max sp chain length Avg sp chain length

500k 518,505 3,714,433 40 8.734
1m 930,898 3,830,223 38 6.807
2m 2,059,727 29,942,857 68 14.906
4m 3,842,154 25,328,322 67 9.449

(b) sp Subgraph statistics
Set sc Triples sc Chains Max sc chain length Avg sc chain length

500k 513,877 5,893,165 49 11.462
1m 930,341 3,875,103 35 6.785
2m 2,065,237 602,270,600 181 7.131
4m 3,839,035 29,796,685 65 11.135

(c) sc Subgraph statistics

Table 4.5: Boost Data Sets Statistics

The fourth class of queries are those following implicit typing (see figure 4.1c). The longest
chains of sp-triples are located in the graph, and the domain and range of the last property (the
super-property of all others) are located. In the figure, this is the sp-relation between prop1 and
propN.

Of these classes identified by the domain and range, the longest available scchains are located
in a similar way. These chains start with a subclass, going up to a root superclass using sc-triples.
In the graphical example, the domain is class1 with the superclass being classN.

Next an instance of the property at the start of the sp-chain is located, and the final query is
generated. This is of the form (ATOM , type,CLASS ) which needs as many as possible instantia-
tions of the given ρdf rules to get to a match. If the longest located sc-chain starts at the domain
of the property, ATOM will be the domain of the instance and CLASS will be the last class in
the sc-chain (classN ).

The full procedure then was set up as follows. Each data set was loaded and 100 queries of
each class were generated using the given data set. Half of these 100 are “positive” queries: the
triples are known to exist in the data set. The other 50 are “negative” queries. These triples do
not exist in the entailment of the data set. For such triples generally more data will have to be
traversed when running the tested algorithm, which means the time it will cost to answer these
queries, will be greater than for the positive queries.

The negative queries were generally created by replacing the subject or object in the query
with another (randomly chosen) resource of a similar type. As such the form of the query is the
same. These replacements are chosen such that the complexity of answering the query is kept
high, for example by using data of sp or sc chains with similar length.

In the actual experiments, the data was first loaded once for each physical representation.
Next, each set of 100 queries was executed 100 times in a row. To make sure the internal cache in
between queries would not affect the results, after each query the cache was flushed. The easiest
way to do so in Berkeley DB is by disconnecting (closing) the database, and re-opening it. As
such, a clean database cache was used for every query against the database.

After each query several statistics are recorded. This includes statistics like the amount of
pages read into the database, the time it took to execute the query and more. Merging these
statistics gives the end results, discussed further in this thesis.
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class1
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(a) Simple look-up

atom1
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(b) Transitive traversal
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classN

sp
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dom/range

sc

(c) Complex “type” query

Figure 4.1: Forms of Generated Queries
(Double arrows indicate chains of multiple triples.)

Not all queries were generated and used for both types of data sets. Due to the limits in
complexity of the PoweRGen graphs, it was not possible to generate complex enough queries –
or proper queries at all – using the second and fourth classes. Because the first class will behave
similarly for both data sets, as it is a simple look-up and nothing else, that too was used only for
the Boost graph data. With the complexity of the fourth class already used to experiment with
the Boost graph data sets, the third class was used only for the PoweRGen data. In summary,
that means classes 1, 2 and 4 were used only for the Boost graph data sets, and class 3 was used
only for the PoweRGen data sets.
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Chapter 5

Implementations

This chapter discusses the framework that was developed and used to run the experiments with.
The implementation of the entailment algorithm is highlighted.

5.1 Global Architecture

To run all experiments and to be able to compare all results, a C++ application was created. To
provide abstraction from system interfaces and for its convenient API, the Qt toolkit1 was chosen
as base toolkit to develop the application with. The global architecture is shown in figure 5.1.

Qt

CLI Interface

BerkeleyDB

Back-end Interface

Concrete Back-ends

User

(DBs)

Figure 5.1: Global Implementation Architecture

The application implements the entailment algorithm using an abstract storage back-end in-
terface. This algorithm can be executed, along with many other things, using a command line
interface. Other commands included in the implementation in a similar fashion are those to
generate data, do look-ups, insert and remove data and many others.

The storage back-end is defined by an abstract interface, which can be implemented in various
ways without having to modify the actual algorithm. As such it can be guaranteed there are no
differences in the implementation of the algorithm itself, which may influence the experiments.

The three discussed different back-ends were implemented. Each of these used Berkeley DB
as base storage (the C library to be precise), in which the indexes are created. As such, the
experiments are not influenced by the use of different base libraries. There may, however, be
subtle differences caused by Berkeley DB, as in the first case a B-tree was used as main index,
whereas the other two used a hash-index.

1Qt: http://qt.nokia.com/
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Other back-ends that were implemented use a relational database (with support for MySQL2

and SQLite3) and one which uses Virtuoso4 through Soprano5. These were mostly used for the
algorithm verification process, but not for any performance analysis as discussed in this thesis.

The architecture supports the use of multiple back-ends. The special connect command will
spawn the correct concrete back-end which will be interfaced – using the back-end interface –
by the other commands. As said, for this thesis all used back-ends use Berkeley DB as storage
base, but a concrete back-end can use any storage mechanism as base. This means the application
supports running the algorithm using any storage and indexing mechansism, including existing
RDF engines, relational databases or plain file storage.

The user interacts with the application by entering commands. To automate processes helper
scripts can be created which list the commands to execute. These can simply be fed to the
application’s standard input. Such scripts were created to automate processes included but not
limited to the generating of test data and running the experiments.

Limited effort was put into making the implementation efficient. Using Valgrind6, specifically
the Memcheck tool, memory leaks were kept to a minimum. Its callgrind tool was used to optimize
some code paths, while Massif was used to measure overall and peak memory usage.

However, the focus of this research is on comparing three different storage implementations
with an equal interface, especially based on the amount of page reads from disk. It was more
important to get comparable results, rather than having an highly optimized implementation.
Therefore it is likely that the overall performance of the implementation can still be improved.

The application has extensive features to manage RDFS data, including commands to insert,
remove, list, count and check for triples. For an overview of the available commands in the
application, see appendix D.

5.2 Entailment Check Implementation

The entailment algorithm is also implemented as a specific command of the application. The
implementation differs from the theoretical version in ways described in section 3.1. After vali-
dating the correctness of the algorithm, the required corrections were also implemented. These
corrections will be discussed further in this thesis. Additionally there are a few generalizations in
the implementation, making it more flexible.

The main reason is that, while the algorithm supports the required constructs for mrdfs,
ontologies in general may use predicates which behave similarly to those in mrdfs. So rather than
just sticking strictly to the algorithm, the application supports “rule sets.” The default rule set
is the one defined by the mrdfs rules.

The sets are loaded prior to running the algorithm, with the base mrdfs rules always loaded
first. For each set the algorithm is repeated, until a valid match is found. For the experiments
conducted in this thesis, no extra rule sets are used.

Custom rule sets can be a subset of similar rules. They consist of predicates which are mapped
to the original mrdfs predicates such as spand sc. Some parts of the algorithm may require that
there is a mapping for several original predicates, because the rules are not limited to a single ρdf
atom.

The generalization using these sets is straightforward. At any time a look-up is performed
using an atom in ρdf, that atom is replaced with the atom that maps to the original ρdf item.
If there is no mapping in the rule set, the query is simply skipped, as it can never be satisfied
using the given rules. In some cases this implies a complete part of the algorithm can be skipped,
depending on the rule set.

2MySQL: http://www.mysql.com
3SQLite: http://sqlite.org
4OpenLink Virtuoso: http://virtuoso.openlinksw.com/
5Soprano: http://soprano.sourceforge.net/
6Valgrind: http://valgrind.org/
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The various steps in the algorithm are also split up into smaller parts, to make the code more
comprehensible and maintainable. Each of these parts is executed by a wrapper. If a part is not
valid for the query because the predicate P does not match the predicate required for the step, that
part of the algorithm immediately returns false, so the next one is attempted. If a part returns
true as answer to the query, then the remaining parts are not checked: the answer is immediately
returned.

Besides that, a basic look-up of the query is always performed first, before any step of any
rule set is executed. This is required for steps 1 (dom and range triples) and 4 (triples with the
predicate not in ρdf) and even completely implements step 1 of the algorithm. As such there is
no performance penalty for these steps.

For steps 2a and 3a (transitivity of sp and sc) the lookup result would, if existing, be returned
by the first iteration of the traversal, so there is a slight performance penalty for those steps. The
look-up is also unnecessary for steps 2b and 3b (reflexivity of sp and sc) as similar look-ups (with
the atom or object blank) are performed during the algorithm itself.

Finally, for the type queries (steps 5 and 6) the implementation is also such that the explicit
look-up is skipped in the first iteration of the sc traversal. Therefore there is no actual performance
penalty.

All in all the extra check may incur a small performance penalty for some cases. However,
in other cases it may improve performance as the algorithm will be able to terminate earlier and
may not have to load any unnecessary data. Since the implemented traversals follow a depth-first
search strategy, the improvement can in fact be fairly large, depending on the position of the
necessary data in the first iteration. Additionally, when using multiple rule sets, the simple check
makes it possible to skip running the algorithm for the first rule sets, until a matching rule set is
used.

Recall that the algorithm is implemented once for all storage back-ends. As such, the penalty
is at most one look-up per indexing technique. Since the same data and test queries were used in
our experiments, the exact I/O cost solely depends on the used indexing technique. The results
are therefore still comparable.
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Chapter 6

Experiment Results and Analysis

This chapter covers the results of the empirical experiments. It starts with the experimental envi-
ronment that was used, and the metrics that were measured. Next we will discuss the individual
database sizes for each index, followed by the query statistics and comparisons of the three indexes.

6.1 Environment

All experiments were executed on the same machine. This is a moderate work station, equipped
with the following hardware and software:

Brand Dell OptiPlex 980 MT

Chipset Intel R© Q57 Express Chipset

CPU Intel Core i5-650 3.20 Ghz, 2 cores with VT, 4 Mb cache, 64-bit x86-64

Memory 4 Gb RAM (2x2048 Mb, 1333 MHz DDR3 Dual Channel)

Hard disk 320 Gb (7200 RPM), SATA II 3 Gb/s

OS Fedora release 14 (Laughlin)

Kernel Linux 2.6.35.11-83.fc14.x86 64

File system Ext4

Qt Qt 4.7.1

Berkeley DB Berkeley DB 4.8, C version

Compiler GCC 4.5.1 20100924 (Red Hat 4.5.1-4)

The framework is single-threaded. Therefore only one of the available cores was used. The
experiments were run with as few other applications running as possible. Most importantly no
graphical desktop enviroment was started. As such the experiments were executed with as little
external interference as possible.

For the experiments, sets of queries were generated for each data set as discussed in section
4.3. The data sets were loaded using each representation as discussed in section 4.1. The Triple-T
with distance information was configured to materialize 1 step of sp and sc triples.

The queries were then executed 100 times in a row on the corresponding data set, using each
physical index. In between each query, the Berkeley DB cache was flushed by closing the database,
removing the cache files and re-opening the database. The cache size of Berkeley DB was set to
1 Mb, the page size to 4 Kb, for all experiments. With cache sizes under 500 Mb, Berkeley DB
increases it by 25% (to 1.25 Mb in this case) for cache overhead.
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To ensure memory usage is limited, Valgrind’s tool Massif was used for one separate run of
each experiment. This records the peak memory usage of the application. The peak amount of
memory used was consistently lower than 150 Mb. This includes the memory consumed by shared
libraries, such as Qt, and memory mapped files used for Berkeley DB’s cache. Most of this (69%)
was definitely used by Qt, about 28% was occupied by libdl, and only a mere 1.14% was used
directly by Berkeley DB for its memory mapping files.

As such it is obvious the framework cannot load the databases into main memory completely,
validating the measures of disk I/O below.

Several statistics were recorded for each query that was executed. These were:

• Cache hits and misses (as returned by Berkeley DB’s DB->stat() function).

• Pages read and written (as returned by Berkeley DB’s DB->stat() function).

• Real (“Wall Clock”), User and System time (as returned by getrusage() on Linux).

• Minor and major page faults (page reclaims and page faults, as returned by getrusage()

on Linux).

• Block input/output operations (as returned by getrusage() on Linux).

These measures are at any time limited to only the execution of the algorithm. Overhead of
opening and/or closing the database is not included

The amount of pages read for Berkeley DB is equal to the amount of cache misses. Naturally,
no pages are written during the running of an experiment, so those values remained 0 for all
experiments.

The statistics for the minor page faults and block output operations show the same behavior
as these cache misses. This makes sense, as each cache miss means a page has to be loaded from
disk. This results in the same amount of page faults on the OS level: the 4k page size was chosen
to be the same as the page size of the underlying file system. As Berkeley DB memory maps its
cache to files, each page that is loaded into the cache is also written to the memory mapped file,
resulting in several block output operations. Hence these statistics are omitted from this thesis.

Unfortunately due to the lack of root access on the used PC, it was not possible to clear
the OS cache in between each execution of experiments or even each query. To clear this cache
properly the PC had to be rebooted in between each runs. Therefore, the results in the Timings
section (6.3.2), are the averages of 5 runs using a cold cache. Each of these runs were executed
almost directly after starting the PC; the databases were not accessed after the reboot and prior
to running the experiments.

6.2 Database Sizes

The sizes of all databases are shown in tables 6.1 (PoweRGen) and 6.2 (Boost Graph). For the
B-Tree index the sizes of the SOP, PSO and OSP buckets are shown separately. For both Triple-T
indexes, the sizes of the main index and the secondary B-Trees are shown.

The sizes of the OPS variants of the indexes were also inspected. There were no significant
differences these sizes compared to the OSP variants. Therefore, tables 6.1 and 6.2 only show the
sizes of the OSP variants.

The statistics also showed that the following secondary B-Trees were generated for all Triple-T
based data sets:

Subject buckets of None

Predicate buckets of dom, range, sc, sp, type

Object buckets of class, prop
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Set B+-Tree Triple-T Triple-T+d
SOP PSO OSP Main B+-Trees Main B+-Trees

100 69.7 MB 128.2 MB 106.2 MB 159.4 MB 55.2 MB 159.5 MB 55.7 MB
304.14 MB 214.68 MB 215.25 MB

200 140.8 MB 260.7 MB 214.9 MB 319.7 MB 109.8 MB 319.9 MB 111.4 MB
616.57 MB 429.48 MB 431.40 MB

400 282.9 MB 525.2 MB 431.2 MB 647.2 MB 218.0 MB 647.6 MB 220.4 MB
1.21 GB 865.25 MB 867.98 MB

500 353.9 MB 652.6 MB 539.5 MB 1.2 GB 270.5 MB 1.2 GB 274.5 MB
1.51 GB 1.50 GB 1.51 GB

750 530.8 MB 979.6 MB 808.6 MB 1.3 GB 402.9 MB 1.3 GB 410.8 MB
2.26 GB 1.65 GB 1.66 GB

1000 707.6 MB 1.3 GB 1.1 GB 2.5 GB 534.7 MB 2.5 GB 544.9 MB
3.01 GB 2.99 GB 3.00 GB

Table 6.1: PoweRGen Data Set Sizes

Set B+-Tree Triple-T Triple-T+d
SOP PSO OSP Main B+-Trees Main B+-Trees

500k 353.8 MB 642.0 MB 559.9 MB 1.2 GB 238.8 MB 1.3 GB 309.9 MB
1.52 GB 1.48 GB 1.55 GB

1m 705.2 MB 1.2 GB 1.1 GB 2.5 GB 472.2 MB 2.5 GB 592.6 MB
3.03 GB 2.95 GB 3.07 GB

2m 1.4 GB 2.6 GB 2.3 GB 5.0 GB 978.1 MB 5.0 GB 1.3 GB
6.29 GB 5.94 GB 6.26 GB

4m 2.9 GB 5.2 GB 4.5 GB 10.0 GB 1.9 GB 10.0 GB 2.4 GB
12.62 GB 11.88 GB 12.44 GB

Table 6.2: Boost Data Set Sizes

The biggest of these was consistently the predicate bucket of type. This contains all type
atoms, which were also materialized for all properties and classes as part of the data set. For
obvious reasons the size difference between base Triple-T and Triple-T with distance information
was mostly visible in the predicate buckets of sc and sp. The other extra B-Trees did not differ
in size significantly.

These B-Trees support the choice discussed in section 4.1.2 to use the SOP index if both the
subject and predicate are fixed in a look-up (i.e. a look-up of the form (S ,P , ?)). Using the PSO

bucket would for the common cases – such as sc and sp predicates, which are used a lot in the
queries – result in having to look inside the secondary B-Trees to find the necessary matches.

Except for the 500k and 1m data sets, the total sizes of both Triple-T versions are slightly
smaller than or at worst as great as the B-Tree versions. For the 500k and 1m sets, the Triple-T
with distance version is slightly bigger, while the base Triple-T size is always smaller than that of
the B-Tree versions.

Especially in the PoweRGen data sets, the Triple-T versions are significantly smaller than the
B-Tree versions. Because there are fewer sc and sp triples in these sets and because these trees are
shallow compared to the Boost Graph data sets, the impact in size for materializing the necessary
extra data is very minor.

The major exception to this is the 500 set, for which the Triple-T sizes are close to the B-Tree
sizes. Especially the main index grows significantly in size compared to the 400 set, yet the 750
set is not much bigger. Most likely the 500 set reached a fill factor threshold which triggered an
increase in the hash table size. This doubles the size of the main hash table, resulting in a jump in
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consumed size. The same issue seems to appear for the 1000 set, although there is no larger set to
compare with. A better growth strategy may reduce this problem, albeit with possible drawbacks
of having to grow more gradually and therefore reducing update performance.

As such, especially with larger data sets, using Triple-T does save some space over using B-
Trees, up to roughly 5% for the Boost Graph data sets and even 20 to 30% for the PoweRGen
generated graphs.

Recall that the implemented version of Triple-T indexes each atom three times, once for each
bucket. Space usage of Triple-T is probably lower if the three buckets are combined into one, as
the hash table will grow less quickly. However, because the payloads will be larger, performance
may be negatively impacted as it is more likely that a payload occupies multiple pages.

6.3 Statistics

This section will show various measurements of the experiments. The base charts will show the
sum of all executions and all queries. For example, when showing the total amount of pages read
for a specific data set, index type and query class, this number is the sum of all 100 executions of
all queries in that class. Each execution runs 50 positive and 50 negative queries.

Furthermore, the graphs are split into three main query classes: positive queries, negative
queries and all queries combined. Positive queries are those triples which do exist in the given
data set, negative queries are those triples which are not, and the combination of the two will give
the sum of all classes.

The PoweRGen data set graphs have only one query type. Therefore three bars are shown in
each group, one for each physical representation. From left to right these are B-Tree, Triple-T and
Triple-T with distance.

For the Boost Graph data sets, each of these groups contains of twelve bars each. These are
divided in four smaller groups of three bars each. Each group represents a query class – the type
of queries as discussed in section 4.3. The first group are the plain look-ups, the second group
the single-step traversals and the third group the complex type queries. The fourth group is the
sum of all these, or the overall average for charts showing averages per query. This fourth class
encompasses 300 executions of 100 queries each: 100 of each query class.

Again, each bar of these four groups represent the physical representations that are used, in
the same order as for PoweRGen.

Many charts use a logarithmic scale, as the values between the query classes or even the used
indexes are vastly different.

B-Tree Triple-T Triple-T+d

(a) PoweRGen data legend

Index: B-Tree, Query Class: 1
Index: Triple-T, Query Class: 1
Index: Triple-T+d, Query Class: 1
Index: B-Tree, Query Class: 2
Index: Triple-T, Query Class: 2
Index: Triple-T+d, Query Class: 2

Index: B-Tree, Query Class: 3
Index: Triple-T, Query Class: 3
Index: Triple-T+d, Query Class: 3
Index: B-Tree, Query Class: All
Index: Triple-T, Query Class: All
Index: Triple-T+d, Query Class: All

(b) Boost Graph data legend

Figure 6.1: Legend of graphs

The averages that are listed represent the arithmetic average per single query. The legends of
all graphs are in figure 6.1.
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6.3.1 Cache Misses

Whenever Berkeley DB needs to load a page (4 Kb) of the loaded database, it first checks its
internal cache (of 1 Mb) if the page is available directly. Increasing the cache size will naturally
improve performance, as the chances of a page being available in the cache become greater. How-
ever, a greater cache size also implies more memory consumption. As explained before, the cache
size was limited to measure the performance under fairly bad scenarios.

Figures 6.2 and 6.3 show the amount of cache requests and cache misses Berkeley DB encoun-
tered during the experiments. The amount of requests is the sum of cache hits and cache misses.
The cache misses correspond to loading of pages which were not available in the cache. Further-
more the fraction of cache misses over the total amount of cache requests is shown separately.

PoweRGen Experiments

As can be seen in figure 6.2a, running the experiments using the PoweRGen data sets requires
the most pages to be found in the expected efficiency order: B-Tree loads the most pages, followed
by basic Triple-T and then Triple-T with distance.

However, looking at the amount of cache misses in figure 6.2b, basic Triple-T stands out for
negative queries. It seems the working set for B-Tree is more efficiently used than base Triple-T,
which using fewer cache requests still has more cache misses.

The clear winner in all cases is Triple-T with distance, which needs to do less traversal. As
the queries are simple traversals – using look-ups of triples with transitive predicate alone –
the benefit of having extra information of these relations materialized is great, even though the
transitive chains are relatively short.

The percentage of cache misses over the total amount of cache requests, shown in figure 6.2c,
support the above conclusions. Especially for negative queries, which potentially require more
branches of the transitive tree to be traversed show that B-Tree is able to re-use most pages in its
cache – relatively more than both Triple-T versions. However, as the absolute number of cache
misses is crucial in measuring the performance using external memory, the Triple-T with distance
index performs better than anything else.

Boost Graph Experiments

The results of the experiments using the complex Boost Graph data make one thing clear: no
matter how large the graph is, the B-Tree solution requires the most pages to be loaded. The
amount of cache requests (figure 6.3a) is clearly higher than with the Triple-T based indexes. The
differences are especially large for the less complex queries.

As expected, Triple-T and Triple-T with distance perform equally well on the two base query
classes. The extra data that is materialized in the enhanced version is not used for these queries.
For complex queries, it becomes clear that adding the extra data has its benefits. Whereas the
basic Triple-T has about as many cache misses as the B-Tree solution, this amount is almost
always lower when a small part of the entailment is materialized (figure 6.3b).

The only exception are the positive queries in the 2m set, where base Triple-T performs
slightly better than the version with distance. The exact cause is unknown, but this may be
due to characteristics of the queries or the data set. It is possible that several queries could be
answered without any traversal, in which case the enhanced version may require more data to be
loaded.

Additionally, in the 500k data set, while the total amount of cache requests for basic Triple-T
is lower than the B-Tree set, the amount of cache misses is slightly higher. This can be caused
by the fact that for each look-up, Triple-T has to load payload data – which may include data
that is not immediately required. This causes the cache to fill quicker, which makes the working
set smaller. As such, it may happen that some data needs to be re-loaded during the execution
of a query. Increasing the cache size slightly may therefore reduce this difference, or even make
Triple-T perform better than B-Tree. Triple-T with distance does perform batter than both other
indexes in this case.
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A final benefit of Triple-T is the fraction of cache misses over the total cache requests. In the
charts the difference in cache requests between Triple-T and Triple-T with distance is fairly small,
compared to the difference in cache misses. As shown in figure 6.3c, the percentage of cache misses
over the total amount of cache requests is – for complex queries – the lowest when using B-Tree
storage. This means the working set in the cache is better re-used while computing the results.
However, the total amount of cache requests is so much higher that the number of cache misses is
still significantly higher than with Triple-T.

On the other hand, the percentage of cache misses for Triple-T with distance is much lower
than base Triple-T. Taken into consideration that the total amount of cache requests is also lower,
this shows that Triple-T with distance indeed performs significantly better than the basic Triple-T
version.

6.3.2 Timings

To compare the execution time of the queries, three times are measured. The first is real or
wall clock time. This is the total time the process took in seconds. The user time is the time
spent in user mode on the system, whereas the sys time is the time spent in kernel processes. This
corresponds to the results of, for example, the time command on UNIX-like systems. As discussed
earlier, the amount of runs making up these statistics is limited. Rather than having 100 runs,
there are just 5. This may make the statistics less accurate.

PoweRGen Experiments

The results in the PoweRGen set are not quite as you may expect, considering the cache misses
discussed in section 6.3.1. In all cases the B-Tree solution takes less time than both Triple-T
versions, with no signifant differences between the latter two, as shown in figure 6.4a.

The wall clock time shows that for the smallest set, using either Triple-T version it takes
about three times as long to answer a query, opposed to using the B-Tree version. The difference
decreases as the data set grows. Figure 6.4b shows that the biggest differences are caused by the
negative queries, which in all cases require a longer time to get a result than the positive queries.

Figure 6.4a also shows that Triple-T uses significantly more time in user and kernel mode
compared to B-Tree. These do not include the waiting for disk pages to be loaded. This is likely
to be due to the compression that is applied. The used Triple-T implementation adds overhead
on the CPU level after each page load.

Another cause of relatively bad performance of Triple-T can be found in the way the data is
structured and stored. Recall that the PoweRGen data set has queries which simply traverse a
single sp or sc chain. The naming of the used properties can benefit the B-Tree solution. These
names are not random, but Class0, Class1, . . . , ClassN, as generated by PoweRGen. These names
are prefixed with a sub-graph identifier. The chains do not spread across multiple sub-graphs, but
are local within a single PoweRGen generated graph. The same goes for the properties.

This means there is more predictable data locality in the B-Tree. All look-ups performed by
the algorithm are of the form (A, sp, ?) or (A, sc, ?), depending on the query. This means only the
PSO index is used. Also, as the classes in a chain will be neatly grouped together, they are also
more likely to be on disk pages closer to each other. This means the hard disk has to seek less to
load the required pages: it may be able to just read-ahead the required pages from disk.

In general a hard disk has an average seek time of 6-10 milliseconds. That means 1 or 2 extra
seek operations per query for Triple-T can already completely cause the difference in the results.
This is not unlikely: in the Triple-T implementation, there is one big hash table for all buckets.
The subject buckets of the corresponding classes will be requested by the algorithm. These may
be scattered all over the index file, causing the disk to seek the correct pages more often, causing
the delay.

Restoring some of the original Triple-T properties may help. Depending on the bucket sizes, a
graph may perform more efficiently if all three buckets in Triple-T are joined together in one key.
The hash table is less likely to fill up and may remain smaller. However, as originally motivated,

42 A Study of Efficient RDFS Entailment in External Memory



6.3. STATISTICS

overflow buckets are also expensive if they require loading more data than required. This is a
trade-off to be made depending on the RDFS graph and its usage.

The same goes for compression, which has a lesser impact but is still visible. Not compressing
data in Triple-T until it becomes too large to fit on one page can reduce the CPU time required
to load data.

With more random names for classes and properties, and with sc and sp chains, the data
locality in the B-Tree solution will also be reduced. This is expected to degrade the performance
of the B-Tree implementation for these kinds of queries.

Having said that, it is clear that performance on all accounts is still good. Even though the
traversals are shallow, generally 4 to 5 steps, the framework can still answer 50 to 100 queries per
second (or 3,000 to 6,000 per minute) on a moderate PC. Better hardware and a larger cache can
vastly increase that number.

Boost Graph Experiments
The results for the Boost Graph data sets are in figure 6.5. A first glance shows that the results

are much closer to the results shown by the cache misses discussed in section 6.3.1. There are a
few cases were base Triple-T requires slightly longer to return a result than using B-Tree. This
happens mostly in the complex queries. With the larger data sets, there is a modest benefit for
Triple-T with distance, which performs slightly better than the other two physical representations.

Figure 6.5a also shows that Triple-T often requires a little more CPU time compared to B-Tree.
As discussed with the PoweRGen timings, this may be due to having to decompress the data from
memory.

Overall the differences are not very large. Even with a cold cache, each of the three indexes
perform almost equally well. However, the Triple-T with distance index does perform at least as
good as – but mostly better – in all cases when looking at the all queries combined in each data
set.

Figure 6.5b also makes it clear that the data set size does not influence the time it takes to
answer basic queries much. There is more variation in the complex queries, but this can also be
an artifact of the characteristics of the different data sets. As shown in section 4.2.2, the chain
lengths within the data sets do differ plenty to cause such variations.

For the simple queries – single look-ups and traversing one step – performance looks very good.
Not much more than 0.02 seconds is required to answer a single query, on average. In fact, the
most basic look-ups get a result back in under 0.01 second in most cases. That results in being
able to answer 50 to 100 queries per second, or 3,000 to 6,000 per minute.

The complex types of queries are clearly at a disadvantage. With a cold cache it quickly
takes more than 1, and regularly even 2 or 3 seconds to get a result. Despite the moderate
hardware, that means performance can degrade to as much as being able to answer only 20
queries per minute. However, considering that the lengths of these queries are longer than in
realistic scenarios, performance is still not too bad. Additionally, using a bigger cache and not
running from a cold cache, can easily improve performance.

6.3.3 OSP vs OPS index

As discussed in section 4.1.1, there is a choice to be made whether to order the object-based
bucket in each of the physical representations either in OSP (Object, Subject, Predicate) order, or
in OPS (Object, Predicate, Subject) order. Using the OPS order in combination with the SOP and
PSO ordered indexes makes it possible to do efficient look-ups for all forms of look-ups. It is not
necessary to scan many secondary items to find matching tertiary items.

However, data locality is reduced and therefore OPS may in fact require more I/O operations
when executing multiple look-ups in a row, or when performing join operations.

The previous analysis in this study were based on the results using the OSP index. We will
now compare variations where the OSP order was replaced with an OPS index order, in all three
storage back-ends. For clarity, only the overall results are used for the Boost Graph data sets.
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That is: the result of all three used query classes is combined. In most cases, the complex query
class (class 4) will influence this overall number the most.

In the charts, each index is repeated using two bars. The left of these pairs is the OSP vari-
ant, as discussed in the previous sections. The second bar represents data gathered using an
implementation with the OPS index order.

PoweRGen Experiments
As the cache requests and misses show for the PoweRGen data sets, figure 6.6, the benefit of

using OPS is almost non-existent. As expected, the Triple-T indexes are practically not impacted
at all. For the B-Trees, the number of cache requests in fact lies a little bit higher for the negative
queries, when using OPS (figure 6.6a).

As figure 6.6b shows, regarding the amount of cache misses the differences are slightly bigger
when using B-Tree storage. Especially for the negative queries, using OSP as index order seems
to be more beneficial. The amount of cache misses and even cache requests is higher when using
OPS. This suggests that the working set in the limited cache is put to use more efficiently when
using OSP order.

Regarding the execution times as shown in figure 6.7: these timings were recorded using a hot
OS cache. Therefore, page faults on the high level generally could be solved without physically
accessing the disk. Therefore, the timings are different from the cold cache results discussed
previously.

These times, especially the wall clock time in figure 6.7b, show some interesting results for the
Triple-T based indexes. While there was no visible impact concerning the amount of page reads
when switching from OSP to OPS, Triple-T is impacted mostly in a negative way. Although the
differences are minor, they are visible.

Recall that the object bucket in Triple-T is loaded whenever the object is known, but the
subject of the look-up triple is unknown. As such, the subject is always a blank in look-ups
where the object bucket is used. The expected result would be that OPS would therefore give
slightly better results: rather than having to scan all subjects for possibly matching predicates,
the right predicate can immediately be found and all corresponding subjects can be returned,
without actively scanning the remained of the bucket. This should normally be more efficient.

This suggest that the problem lies with loading the data as it comes from the store into more
useful memory structures. The exact cause is not easily determined, though.

Boost Graph Experiments
Looking at the similar statistics for the Boost Graph data sets (figure 6.8), there again is no

clear winner. Triple-T based indexes still perform pretty much the same for both cache requests
and cache misses. In the B-Tree index the amount of cache requests (figure 6.8a) tends to be
slightly lower for OPS, except for the negative queries over the 2m data set. The amount of cache
miseses is, however, pretty much equal (figure 6.8b). Therefore the fraction of cache misses (figure
6.8c) is slightly higher.

Because the absolute amount of cache misses is the same, there is no significant improvement
of using OPS instead of OSP ordering. However, as the amount of cache requests is lower in OPS

there may be a very minor benefit depending on the implementation: loading fewer pages also
means that fewer pages have to be processed. While there is no gain on the I/O level, there might
be a minimal profit in overall timings.

The timing results in figure 6.9 exhibit similar behavior for Triple-T as with the PoweRGen
sets. OPS performs slightly worse, contrary to expectations. Again the differences are quite minor.

In conclusion, there is no significant difference between organising the object bucket of the
indexes in subject, predicate order or predicate, subject order. The results are at least comparable
and often even pretty much the same. Therefore the order is best selected by making an informed
decision using the characteristics of the RDFS graph that is stored, and the queries that will be
executed.
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Figure 6.2: PoweRGen Graph Cache Statistics
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Chapter 7

Conclusions

As shown throughout this thesis, it is not trivial to efficiently determine if a triple is entailed by an
RDFS graph or not. A proposed algorithm was first modified and (slightly) extended for practical
reasons. Its implementation was then tested. A subtle mistake was discovered and corrected. The
algorithm was also adjusted for specific single-triple computations, allowing early termination in
the more complex queries. Additionally, support reflexivity of sp and sc was added.

Next test data was generated, which follows the structure of real-world data. Graphs of various
sizes were generated. To test the actual scalability of the algorithm, the ontology sizes in some
of these graphs are much larger than what can be expected in most real-world data.Because the
algorithm is mostly bound by the size of the ontology – instance data matters less – it was shown
that even under quite extreme circumstances, the algorithm will perform well.

The test data was generated using two different libraries, PoweRGen and Boost Graph. The
former, while tailored for RDFS data, had limitations making it hard to generate sufficiently large
graphs with the desired properties. The Boost Graph data sets proved to be a bigger challenge
for the algorithm.

The experiments were done using three different forms of physical representation of the data,
of which two are closely related. The first, baseline B-Tree approach is using a common form of
data storage which – in slightly different forms – is also used in many commercial systems.

The Triple-T index is newer and not yet widely used. However it promises to be a decent
candidate for RDFS data storage, with fast look-ups and efficient join processing [9]. An enhanced
version of Triple-T – Triple-T with distance – which materializes a small part of the graph’s
entailment was created to reduce the amount of look-ups required to complex queries.

Several changes to the original Triple-T index were discussed and implemented, to attempt to
improve its performance. These modifications are present in both the base Triple-T and Triple-T
with distance versions.

In the experiments we compared both the amount of cache requests and misses as indicator for
I/O performance. Additionally several timings were measured and compared. Finally, to make
certain triple look-ups more efficient, the internal order of the object sub-index was compared
using both OSP and OPS ordering in each of the used indexes.

7.1 Results

In general, Triple-T performs at least as good as the more common B-Tree index, while using less
space. Often it requires fewer pages to be read from disk, making it more efficient than the B-Tree
index.

Triple-T with distance has proven to be much more efficient in queries of transitive predicates.
The amount of cache misses measured by Berkeley DB is significantly lower. Also in terms of
time required to answer a query, Triple-T with distance mostly performs better than the other
two tested indexes. For simple queries the performance was equal to the base version of Triple-T.
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The main drawback is that updating data using transitive predicates is less trivial and therefore
slower. Further research will need to be done to compare and optimize updates between these
methods of physical representation.

The Triple-T modifications such as compression and splitting the indexes may have had a
negative impact. Further research will need to be performed to give more conclusive results
regarding these changes.

The comparison of OSP versus OPS ordering of the object buckets of each index gave no con-
clusive results. Both forms performed roughly the same.

7.2 Future Work

The research discussed in this thesis is only a small part of a much bigger picture involving RDF
and RDFS. There is a lot of research that can still be done following this research. In this section
we will discuss extensions to the Muñoz algorithm, applications of the algorithm as well as possible
extensions to indexing RDFS data efficiently.

7.2.1 Triple-T Enhancements

The implementation of Triple-T introduced several changes over the original version. On paper
these changes would not impact I/O efficiency, or even improve it. However, as the experiments
have shown, this may not be the case due to the way hardware behaves.

Therefore, to get the best out of the Triple-T solution, more experiments can be performed.
This includes varying several properties:

• Using a hash table index versus a B-tree index

• Combining all three buckets of a resource into one payload or not

• In the case of the split index, putting all resources in one big hash table, or three smaller
ones

• Always using compression, no compression at all, or compression only when it reduces the
required amount of pages to store the payload

Furthermore, additional experiments can be performed to compare materializing one or more
steps of the transitive closure in Triple-T with distance. The update complexity will remain the
same, but in practice they may be slower as more data needs to be inserted. Additionally the
space occupied by the data will grow, but query performance is expected to be improved.

7.2.2 RDFS Rules

Obviously the studied ρdf is only a subset of the RDFS vocabulary. The full set of rules following
the specification of the RDF Semantics [27] add various extra rules, deliberately left out of ρdf. By
expanding ρdf with terms rdfs:Resource, rdfs:Class and rdf:Property from RDFS, various
extra rules involving these terms can easily be added. See table B.1 in appendix B for the full
set of rules for the RDF semantics. Appendix C shows the set of relevant definitions for the ρdf
vocabulary, from [28].

Rule rdfs6 in [27] states that if a graph contains (a, type, rdf:Property), then a is a sub-
property of itself (i.e. (a, sp, a) exists). Consider the graph with only this precise triple. This is
not yet covered by the mrdfs rules. The same holds for classes, using rule rdfs10.

The rules also lack the notion that all resources are of type rdfs:Resource, as defined by
the RDF Semantics rules rdfs4a and rdfs4b. Additionally, every class is also a subclass of
rdfs:Resource, as defined by rule rdfs8 [27].

As the corrections below will show, all these problems can be solved easily by doing a series
of additional look-ups for specifically constructed triples. First though, to prevent duplication or
infinite loops, it will help to show that some queries are in fact equal.
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Proposition 5. Given triples A = (a, sc, rdfs:Resource), B = (a, type, rdfs:Class) and C =
(a, sc, a), and graph G, the following statement always holds: A ∈ G⇔ B ∈ G⇔ C ∈ G.

Proof. The proof is straightforward, using the RDF Semantics rules [27] and the RDF Schema
vocabulary [28]. The part A ∈ G ⇒ B ∈ G follows directly from the definition of the domain
of rdfs:subClassOf (sc). The other way around, A ∈ G ⇒ B ∈ G, follows directly from rule
rdfs8. This solves A ∈ G⇔ B ∈ G.

For B ∈ G ⇒ C ∈ G, the definition of rule rdfs10 directly proves this. Finally, C ∈ G ⇒
B ∈ G is again a direct conclusion of the definition of the domain and range of rdfs:subClassOf.
This solves B ∈ G⇔ C ∈ C.

Combining these two conclusions, the correctness of the proposition is shown.

Proposition 6. Given triples A = (a, type, rdf:Property) and B = (a, sp, a), and graph G, the
following statement always holds: A ∈ G⇔ B ∈ G

Proof. Again, inspecting the rules and RDFS definitions suffices to complete the proof both ways.
The first part, A ∈ G⇒ B ∈ G, follows immediately from the definition of rdfs6. For B ∈ G⇒
A ∈ G, the definition of the domain (and range) of rdf:Property immediately proves this.

Because these equalities hold, it is easy to add support for queries of the form
(a, type, rdf:Property) ∈ G, (a, sc, rdfs:Resource) ∈ G and (a, type, rdfs:Class) ∈ G. These
can simply be rewritten to their (a, sp, a) and (a, sc, a) counterparts respectively, such that steps
2b and 3b will answer the queries.

As these are already implemented using plain look-ups on various triples, the steps need to
be expanded slightly to make support for rdfs:Resource, rdfs:Class and rdf:Property com-
plete. The detection of classes is complete, except for the exact triples (a, type, rdfs:Class) and
(a, sc, rdfs:Resource). Similarly, the only look-up that has to be added for the properties is
(a, type, rdf:Property).

To complete support for rules rdfs:Resource, using rdfs4a and 4b, whenever a query of the
form (u, type, rdfs:Resource) is requested, the existence of triples (u, ?, ?) or (?, ?, u) must be
checked. From using the base RDFS graph, these triples also exist for any u in the vocabulary of
RDFS, as all those terms appear as subject or object in their defining syntax triples.

Finally, rules rdfs12 and rdfs13 can quite trivially be implemented by running the necessary
look-ups during the algorithm. As they both use sp and sc respectively in their goals, these
look-ups will also cause expansion of the algorithm for steps 2-6 (except for the reflexive steps 2b
and 3b).

7.2.3 Blank Nodes and Cycles

Muñoz et al. prove that the algorithm also works with the extension that the derived graph H
has triples with no more than one blank node [13]. In that case, determining whether a graph G
entails H based on the ρdf fragment, can be done in O(|H||G| log |G|).

The algorithm as discussed in this thesis focuses on those cases in which H is a single triple
(and it was also optimized for this use). In that case, the complexity is the same as the original
algorithm, O(|G| log |G|).

The main changes in the actual algorithm as implemented will involve changing the order in
which the spand sctriples are traversed. The current version uses a specific order, but starting
from a blank node is not practical. In that case, the traversal should start from the other end.
The process is only a little more involved for steps 5 and 6 in the algorithm, as also shown by [13].

7.2.4 Efficient Updates

Following the findings and the working implementation of this thesis, the next step is to put
the entailment algorithm to actual use. A sample of this is an update algorithm which can
(deterministically) remove extra triples, such that another is no longer entailed by the graph.
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While inserts are fairly trivial to perform, removing a triple is not always that easy. This is
because the removed triple may still be inferrable from the updated graph.

Such an update algorithm is proposed by Chirkova and Fletcher [2]. They take the approach
of using tuple-generating dependencies (tgds) to describe the RDFS rules. Using an unchase
algorithm with these tgds, a list of triples can be constructed which are (potentially) used to infer
a specific triple in the graph.

Due to the lack of negation in RDF, it is not possible to just add a negated triple to the graph
and leave it at that. Therefore at least one of the triples which derive the to-be-deleted statement
must be removed, such that the inference is broken and the statement is effectively removed.

A more stricter form of this is when there is essentially just one (base) triple which causes the
inference to occur. This deterministic form allows for automatic deletion of triples without having
to make any choices (either by human intervention or automatically).

Near the end of the paper, algorithm 6.1 is a proposal of how to perform this deterministic
deletion. The algorithm directly checks whether a graph still entails a triple, in step 3. That step
can now be implemented directly using the algorithm discussed in this thesis; what remains is the
other “key step” in the algorithm: computing the unchase of the triple in the graph. Especially
for computing a deterministic unchase, this part of research intuitively overlaps that of logical
programming. Expertise and knowledge in that area may help in constructing an overall efficient
update algorithm.

7.2.5 Better Transitive Indexing

As shown by the extended Triple-T index, being able to skip over some queries can greatly reduce
the amount of look-ups that have to be performed in an RDFS graph. This leads to lower I/O
costs, which in turn implies better performance and scalability. This is mostly because the costly
part of the algorithm involves finding paths between two atoms over a transitive predicate. More
specifically, it is about checking if a path between two items exists; it is not required to know the
exact path.

A new method of indexing transitive predicates may therefore give a significant performance
boost. To achieve this, ordering the atoms in specific ways can introduce options to being able
to more quickly determine whether a path exists or not. For example, consider an ordering
OR(X ) which defines the weight of atom X in transitive relation R. If for each triple (a,R, b)
the property OR(a) < OR(b) is maintained, simply checking the positions of a and b can already
limit the amount of steps that need to be taken during the traversal. After all there is no need to
traverse beyond triples (x,R, y) for which OR(y) >= OR(b). However, maintaining such an index
properly during updates is far from trivial.

Additionally sub-trees can be introduced, placing each atom in a sub-tree. By maintaining
extra lists of relations between these sub-trees, an algorithm may be able to more quickly discard
parts to search through. Consider an algorithm trying to check if a path using relation R exists
between a and b (i.e. a query for triple (a,R, b)). Denote TR(a) as the set of sub-trees reachable
from a through R. If this set contains the sub-tree in which b resides (denoted by t(b)), other trees
in the set TR(a) can be discarded or delayed for further searching. A valid path from the entry
points in t(b) (atoms reachable from a) to b can then be found locally within the sub-tree. If this
is found, (a,R, b) will also exist.

Although the entire path will still be searched, the sub-trees may hint in the right direction.
As such, a valid path may be found sooner, although this is not guaranteed.

If t(b) /∈ TR(a) then it is first necessary to check if there are paths from any x ∈ TR(a) to t(b).
As the amount of trees is smaller than the total amount of statements in the graph, this question
is most likely quicker to answer.

Again, maintaining these subtrees and covering all subtleties involved in this approach is
not trivial. Additionally, since there is no restriction of cycles of the rdfs:subPropertyOf and
rdfs:subClassOf trees, there may be additional complexities to beware of. In fact, a restric-
tion on cycles on rdfs:subPropertyOf was explicitly removed from the recommendation in 2001
(Action 2001-09-21#5 [22]).
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Appendix A

PoweRGen Configuration

The base configuration to generate the smaller graphs of the PoweRGen data sets, is provided in
a parameters.conf file. The contents of this file as it was used, excluding the library and output
paths, is presented in listing A.1.

numOfSchemas = 1
format = XML
solver = mosek
validate = false
plot = false
taxonomy = true
numOfClasses = 1000
numOfProps = 1000
totalDegreeVRExp = 0.7
p0 = 0.25
selfLoops = 0.126
multipleArcs = 0.177
attributes = 0.05
descendantsPDFExp = 1.8
percentageOfZeros = 0.25
depth = 10
integralityThreshold = 0.5
depthPercentage = 0.6
tree = false
ACCThreshold = 0.6
CRE = 0.6

Listing A.1: PoweRGen parameters.conf file
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Appendix B

RDF Semantics

The rules in table B.1 are taken from the RDFS entailment rules in the RDF Semantics W3C
Recommendation [27]. The triples have been rewritten to be more in line with the rest of this thesis.
See the W3C recommendation document for the full set of rules. The complete recommendation
also lists several other sets of semantic rules which may not always apply.

Rule Name If graph G contains then add:

lg (u, a, l) (u, a, :n)
Where : n identifies a
blank node allocated to lit-
eral l by this rule.

rdfs1 (u, a, l) ( :n, type, rdfs:Literal)
With l a plain literal Where : n identifies a

blank node allocated to l by
rule lg.

rdfs2 (a, dom, tlitx), (u, a, y) (u, type, x)
rdfs3 (a, range, x), (u, a, v) (v, type, x)
rdfs4a (u, a, v) (u, type, rdfs:Resource)
rdfs4a (u, a, v) (v, type, rdfs:Resource)
rdfs5 (u, sp, v), (v, sp, x) (u, sp, x)
rdfs6 (u, type, prop) (u, sp, u)
rdfs7 (a, sp, b), (u, a, y) (u, b, y)
rdfs8 (u, type, class) (u, sc, rdfs:Resource)
rdfs9 (u, sc, x), (v, type, u) (v, type, x)
rdfs10 (u, type, class) (u, sc, u)
rdfs11 (u, sc, v), (v, sc, x) (u, sc, x)
rdfs12 (u, type, rdfs:ContainerMembershipProperty) (u, sp, rdfs:member)
rdfs13 (u, type, rdfs:Datatype) (u, sc, rdfs:Literal)

Table B.1: RDFS Entailment Rules
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Appendix C

ρdf Vocabulary Triples

The following triples are the triples that define the ρdf vocabulary, extended with rdfs:Resource,
rdfs:Classand rdf:Property. These are derived from the RDFS Vocabulary [28]. The labels,
comments, rdfs:isDefinedBy, etc. elements are omitted here – this list only mentions the type
of each term, for properties the domain and range, and for classes any class they are a subclass
of. For a complete definition of RDFS see [28].

rdfs:Resource

• (rdfs:Resource, rdf:type, rdfs:Class)

rdf:type

• (rdf:type, rdf:type, rdf:Property)

• (rdf:type, rdfs:domain, rdfs:Resource)

• (rdf:type, rdfs:range, rdfs:Class)

rdfs:Class

• (rdfs:Class, rdf:type, rdfs:Class)

• (rdfs:Class, rdfs:subClassOf, rdfs:Resource)

rdfs:subClassOf

• (rdfs:subClassOf, rdf:type, rdf:Property)

• (rdfs:subClassOf, rdfs:domain, rdfs:Class)

• (rdfs:subClassOf, rdfs:range, rdfs:Class)

rdfs:subPropertyOf

• (rdfs:subPropertyOf, rdf:type, rdf:Property)

• (rdfs:subPropertyOf, rdfs:domain, rdf:Property)

• (rdfs:subPropertyOf, rdfs:range, rdf:Property)
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rdf:Property

• (rdf:Property, rdf:type, rdfs:Class)

• (rdf:Property, rdfs:subClassOf, rdfs:Resource)

rdfs:domain

• (rdfs:domain, rdf:type, rdf:Property)

• (rdfs:domain, rdfs:domain, rdf:Property)

• (rdfs:domain, rdfs:range, rdfs:Class)

rdfs:range

• (rdfs:range, rdf:type, rdf:Property)

• (rdfs:range, rdfs:domain, rdf:Property)

• (rdfs:range, rdfs:range, rdfs:Class)
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Appendix D

CLI Interface

The following is a list of commands supported by the developed application. The application
supports two tables: original and update. The latter was used to store updated graphs in,
but this is not actively used by default. The default table for all commands that support it is
original.

help
Usage: help [COMMAND]

Get a list of all available commands, or more detailed usage information of a specific com-
mand.

connect
Usage: connect URL

Connect to a storage back-end. URL specifies which database to connect to. Its scheme is the
storage type, followed by (optionally) a username, password, hostname and port number,
and a path which represents the database name. Additional options can also be added in a
familiar method. Some examples:

• mysql://username:password@localhost:3306/database

• sqlite:///path/to/file

• virtuoso:///path/to/location

• bdb:///path/to/directory/

• bdbbt:///path/to/directory/?cache=1m&pagesize=4k

• bdbtt:///path/to/directory/?cache=1m&pagesize=4k

Supported back-ends at the time of writing include MySQL, SQLite, Virtuoso (through
Soprano), a basic Berkeley DB back-end (bdb), Berkeley DB B-Tree and Berkeley DB Triple-
T.

disconnect
Usage: disconnect
Close the open back-end or back-end connection.

listOptions
Usage: listOptions
List the keys of options available for the currently connected back-end.

setOption
Usage: setOption KEY VALUE

Set an option for the currently connected back-end.
This is used to configure the Triple-T back-end distance, e.g. using setOption distance

1.
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srand
Usage: srand SEED

Seed the random number generator. SEED is the seed to seed with (unsigned integer). If
omitted, the current system time is used.

load
Usage: load FILE [SEPARATOR [TABLE]]

Load a formatted file with triples into the database. The file indicated by FILE must contain
one triple per line, in which each resource is separated by SEPARATOR in subject, predicate,
object order. TABLE is either original or update, which represents which table to work
with.

export
Usage: export FILE [SEPARATOR [TABLE]]

Export the triples in a table to a file. The file will contain one triple per line, with resources
separated by SEPARATOR. TABLE is either original or update, which represents which table
to work with.

insert
Usage: insert SUBJECT PREDICATE OBJECT [TABLE]

Insert a triple into the database. The triple is defined by its subject, predicate and object.
It is inserted in the table indicated with TABLE (original or update).

remove
Usage: insert SUBJECT PREDICATE OBJECT [TABLE]

Remove all matching triples from a table in the database. The triple is defined by its subject,
predicate and object. Use to denote a blank. TABLE is either original or update, which
represents which table to work with.

truncate
Usage: truncate [TABLE]

Truncate the table indicated by TABLE. Special table rules removes all custom rule sets.

exists
Usage: exists SUBJECT PREDICATE OBJECT [TABLE]

Check if a triple exists in a table. SUBJECT, PREDICATE and OBJECT represent the resources
of the triple to check. A can be used to denote a blank. TABLE is either original or
update, which represents which table to work with.

list
Usage: list SUBJECT PREDICATE OBJECT [TABLE]

List all triples matching the request in a table. SUBJECT, PREDICATE and OBJECT represent
the resources of the triple to check. A can be used to denote a blank. TABLE is either
original or update, which represents which table to work with.

chainstats
Usage: list PREDICATE [TABLE]

Get the statistics of a transitive predicate, like sc or sp in the current graph. TABLE is either
original or update, which represents which table to work with.

listRules
Usage: listRules
List all defined deterministic tuple-generating dependencies. Use addRule and removeRule

commands to modify these.

addRule
Usage: addRule SUBJECT1 PREDICATE1 OBJECT1 SUBJECT2 PREDICATE2 OBJECT2

64 A Study of Efficient RDFS Entailment in External Memory



Add a new deterministic tuple generating dependency used in unchase. All variables in the
right-hand side triple must also occur on the left-hand side. A variable is denoted by using
the syntax @n with n a posttive integer number. For example, a symmetrical predicate R rule
can be defined as follows: addRule @1 R @2 @2 R @1. This implies that if a triple (a,R, b)
is found, (b,R, a) will considered to exist as well (in unchase only).

removeRule
Usage: removeRule SUBJECT1 PREDICATE1 OBJECT1 SUBJECT2 PREDICATE2 OBJECT2

Remove a rule added by addRule.

closurecheck
Usage: closurecheck SUBJECT PREDICATE OBJECT [TABLE]

Check if a triple exists in the closure of the graph in a table. Implementation of algorithm
by Muñoz et al. Custom rules are ignored. Use the ”unchase” command to check if there is
an unchase of the triple. If so, it is also in the closure.

unchase
Usage: unchase SUBJECT PREDICATE OBJECT [TABLE]

Get the set of triples in the unchase of a given triple. Each returned triple is checked to be
in the entailment of the graph.

stats
Usage: stats
Get current cache statistics from the back-end.

dotexport
Usage: dotexport PREDICATE FILE

Export a predicate graph to a dot file. Only table original is supported.

graphgen
Usage: graphgen PREDICATE PREFIX TYPE N [ALPHA [BETA]]

Generate subclass or subproperty graphs using power-law properties. PREDICATE is the
predicate to use as edge. PREFIX is the naming prefix for vertices. TYPE is the type to
assign to the vertices. N is the amount of vertices to place in graph. ALPHA is the value
controlling how steeply the curve drops off. A larger value indicates a steeper curve. BETA

is the value controlling the average degree of vertices.

See http://www.boost.org/doc/libs/1_41_0/libs/graph/doc/plod_generator.html for
information about the parameters.

killcycles
Usage: killcycles PREDICATE [TABLE]

Make sure a graph of a given predicate contains no cycles. Cycles will be broken by removing
a statement. TABLE is either original or update, which represents which table to work with.

ontologylinks
Usage: ontologylinks [PROPERTY [CLASSTYPE [ZERODEGREEPCT [SELFLOOPPCT]]]]

Create links between properties and classes using domain/range triples. PROPERTY is The
type of properties. All properties should have an existing (name, type, PROPERTY) statement
in the database. CLASSTYPE is the type of classes. All classes should have an existing
(name, type, CLASSTYPE) statement in the database ZERODEGREEPCT is the fraction of classes
(0-1) which should not be assigned as domain or range of properties at all. SELFLOOPPCT is
the fraction of properties that should construct a self-loop, i.e. an equal domain and range.

dotontolgy
Usage: dotontolgy FILE [PROPTYPE [TABLE]]

Export an ontology – links between classes using properties – to DOT format. FILE is the file
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to write to, PROPTYPE indicates which type is used for properties. TABLE is either original
or update, which represents which table to work with.

FindQueries
Usage: FindQueries CLASS N VALID [FILE [TRUNCATE]]

Find interesting queries of a specific type. CLASS is the type of queries to generate:

1 A simple lookup: (PROPERTY , dom,CLASS ).

2 A single traversal step: (ATOM1 ,PROPERTY ,ATOM2 ).

3 A long query: (ATOM , type,CLASS ).

4 A long traversal (ATOM1 ,PROPERTY ,ATOM2 ).

N indicates the total amount of queries to generate, of which VALID will be existing triples.
Queries will be written to FILE (use - for standard output). If TRUNCATE is 1, the file will
be truncated first.

callgrind
Usage: callgrind
Start or stop callgrind instrumentation.

quit
Usage: quit
Close the application.
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